Variational Methods for Structural Optimization
Springer-Verlag New York Inc.
978-0-387-98462-9 (ISBN)
I Preliminaries.- 1 Relaxation of One-Dimensional Variational Problems.- 2 Conducting Composites.- 3 Bounds and G-Closures.- II Optimization of Conducting Composites.- 4 Domains of Extremal Conductivity.- 5 Optimal Conducting Structures.- III Quasiconvexity and Relaxation.- 6 Quasiconvexity.- 7 Optimal Structures and Laminates.- 8 Lower Bound: Translation Method.- 9 Necessary Conditions and Minimal Extensions.- IV G-Closures.- 10 Obtaining G-Closures.- 11 Examples of G-Closures.- 12 Multimaterial Composites.- 13 Supplement: Variational Principles for Dissipative Media.- V Optimization of Elastic Structures.- 14 Elasticity of Inhomogeneous Media.- 15 Elastic Composites of Extremal Energy.- 16 Bounds on Effective Properties.- 17 Some Problems of Structural Optimization.- References.- Author/Editor Index.
Reihe/Serie | Applied Mathematical Sciences ; 140 |
---|---|
Zusatzinfo | XXVI, 548 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Technik ► Maschinenbau | |
Schlagworte | Structural Optimization |
ISBN-10 | 0-387-98462-3 / 0387984623 |
ISBN-13 | 978-0-387-98462-9 / 9780387984629 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich