Variational Methods for Structural Optimization - Andrej Cherkaev

Variational Methods for Structural Optimization

(Autor)

Buch | Softcover
548 Seiten
2012 | Softcover reprint of the original 1st ed. 2000
Springer-Verlag New York Inc.
978-1-4612-7038-6 (ISBN)
160,49 inkl. MwSt
In recent decades, it has become possible to turn the design process into computer algorithms. By applying different computer oriented methods the topology and shape of structures can be optimized and thus designs systematically improved. These possibilities have stimulated an interest in the mathematical foundations of structural optimization. The challenge of this book is to bridge a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in a sufficiently simple form to make them available for practical use and to allow their critical appraisal for improving and adapting these results to specific models. Special attention is to pay to the description of optimal structures of composites; to deal with this problem, novel mathematical methods of nonconvex calculus of variation are developed. The exposition is accompanied by examples.

I Preliminaries.- 1 Relaxation of One-Dimensional Variational Problems.- 2 Conducting Composites.- 3 Bounds and G-Closures.- II Optimization of Conducting Composites.- 4 Domains of Extremal Conductivity.- 5 Optimal Conducting Structures.- III Quasiconvexity and Relaxation.- 6 Quasiconvexity.- 7 Optimal Structures and Laminates.- 8 Lower Bound: Translation Method.- 9 Necessary Conditions and Minimal Extensions.- IV G-Closures.- 10 Obtaining G-Closures.- 11 Examples of G-Closures.- 12 Multimaterial Composites.- 13 Supplement: Variational Principles for Dissipative Media.- V Optimization of Elastic Structures.- 14 Elasticity of Inhomogeneous Media.- 15 Elastic Composites of Extremal Energy.- 16 Bounds on Effective Properties.- 17 Some Problems of Structural Optimization.- References.- Author/Editor Index.

Reihe/Serie Applied Mathematical Sciences ; 140
Zusatzinfo XXVI, 548 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie Mechanik
Schlagworte Structural Optimization
ISBN-10 1-4612-7038-3 / 1461270383
ISBN-13 978-1-4612-7038-6 / 9781461270386
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00