Attractor Dimension Estimates for Dynamical Systems: Theory and Computation - Nikolay Kuznetsov, Volker Reitmann

Attractor Dimension Estimates for Dynamical Systems: Theory and Computation

Dedicated to Gennady Leonov
Buch | Hardcover
XIX, 545 Seiten
2020 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-50986-6 (ISBN)
235,39 inkl. MwSt
This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Carathéodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Hénon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.

Attractors and Lyapunov Functions.- Singular Values, Exterior Calculus and Logarithmic Norms.- Introduction to Dimension Theory.

"It is interesting and very well written. Mostly, chapters are self-contained and rich of detailed explanations. Many powerful computational tools and algorithms provide a solid numerical background for the study of attractor dimensions. ... this book contains advanced material on attractor dimension estimates for dynamical systems. This is definitely suitable for researchers in applied mathematics and computational theory of dynamical systems." (Mohammad Sajid, zbMATH 1483.37001, 2022)

“It is interesting and very well written. Mostly, chapters are self-contained and rich of detailed explanations. Many powerful computational tools and algorithms provide a solid numerical background for the study of attractor dimensions. … this book contains advanced material on attractor dimension estimates for dynamical systems. This is definitely suitable for researchers in applied mathematics and computational theory of dynamical systems.” (Mohammad Sajid, zbMATH 1483.37001, 2022)

Erscheinungsdatum
Reihe/Serie Emergence, Complexity and Computation
Zusatzinfo XIX, 545 p. 34 illus., 10 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 1009 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften Physik / Astronomie Optik
Schlagworte Attractor Theory • Complex Systems • Dimension Theory • Dynamical Systems • riemannian manifolds
ISBN-10 3-030-50986-9 / 3030509869
ISBN-13 978-3-030-50986-6 / 9783030509866
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00