The Probability Companion for Engineering and Computer Science - Adam Prügel-Bennett

The Probability Companion for Engineering and Computer Science

Buch | Hardcover
470 Seiten
2020
Cambridge University Press (Verlag)
978-1-108-48053-6 (ISBN)
138,40 inkl. MwSt
This guide helps undergraduate and graduate students convert pure mathematics into understanding and facility with a host of probabilistic tools. From the basic rules of probability it expands to the most sophisticated modern techniques, equipping those starting their careers and providing a handy reference for professionals and researchers.
This friendly guide is the companion you need to convert pure mathematics into understanding and facility with a host of probabilistic tools. The book provides a high-level view of probability and its most powerful applications. It begins with the basic rules of probability and quickly progresses to some of the most sophisticated modern techniques in use, including Kalman filters, Monte Carlo techniques, machine learning methods, Bayesian inference and stochastic processes. It draws on thirty years of experience in applying probabilistic methods to problems in computational science and engineering, and numerous practical examples illustrate where these techniques are used in the real world. Topics of discussion range from carbon dating to Wasserstein GANs, one of the most recent developments in Deep Learning. The underlying mathematics is presented in full, but clarity takes priority over complete rigour, making this text a starting reference source for researchers and a readable overview for students.

Adam Prügel-Bennett is Professor of Electronics and Computer Science at the University of Southampton. He received his Ph.D. in Statistical Physics at the University of Edinburgh, where he became interested in disordered and complex systems. He currently researches in the area of mathematical modelling, optimisation and machine learning and has published many papers on these subjects.

1. Introduction; 2. Survey of distributions; 3. Monte Carlo; 4. Discrete random variables; 5. The normal distribution; 6. Handling experimental data; 7. Mathematics of random variables; 8. Bayes; 9. Entropy; 10. Collective behavior; 11. Markov chains; 12. Stochastic processes; Appendix A. Answers to exercises; Appendix B. Probability distributions.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises; 356 Line drawings, black and white
Verlagsort Cambridge
Sprache englisch
Maße 183 x 260 mm
Gewicht 1130 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-108-48053-5 / 1108480535
ISBN-13 978-1-108-48053-6 / 9781108480536
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99