Output Feedback Reinforcement Learning Control for Linear Systems - Syed Ali Asad Rizvi, Zongli Lin

Output Feedback Reinforcement Learning Control for Linear Systems

Buch | Hardcover
XVI, 294 Seiten
2022 | 1st ed. 2023
Springer International Publishing (Verlag)
978-3-031-15857-5 (ISBN)
160,49 inkl. MwSt
This monograph explores the analysis and design of model-free optimal control systems based on reinforcement learning (RL) theory, presenting new methods that overcome recent challenges faced by RL.  New developments in the design of sensor data efficient RL algorithms are demonstrated that not only reduce the requirement of sensors by means of output feedback, but also ensure optimality and stability guarantees.  A variety of practical challenges are considered, including disturbance rejection, control constraints, and communication delays.  Ideas from game theory are incorporated to solve output feedback disturbance rejection problems, and the concepts of low gain feedback control are employed to develop RL controllers that achieve global stability under control constraints.
Output Feedback Reinforcement Learning Control for Linear Systems will be a valuable reference for graduate students, control theorists working on optimal control systems, engineers, and applied mathematicians.

Preface.- Introduction to Optimal Control and Reinforcement Learning.- Model-Free Design of Linear Quadratic Regulator.- Model-Free H-infinity Disturbance Rejection and Linear Quadratic Zero-Sum Games.- Model-Free Stabilization in the Presence of Actuator Saturation.- Model-Free Control of Time Delay Systems.- Model-Free Optimal Tracking Control and Multi-Agent Synchronization.- Index.

Erscheinungsdatum
Reihe/Serie Control Engineering
Zusatzinfo XVI, 294 p.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 625 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Elektrotechnik / Energietechnik
Schlagworte Adaptive Dynamic Programming • model-free control • Model-Free Control Algorithms • Multi-Agent Synchronization • Optimal Tracking Control • Reinforcement Learning • Reinforcement Learning Algorithms
ISBN-10 3-031-15857-1 / 3031158571
ISBN-13 978-3-031-15857-5 / 9783031158575
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00