Mitochondrion in the Germline and Early Development -

Mitochondrion in the Germline and Early Development (eBook)

Justin St. John (Herausgeber)

eBook Download: PDF | EPUB
2007 | 1. Auflage
344 Seiten
Elsevier Science (Verlag)
978-0-08-047113-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
170,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Current Topics in Developmental Biology provides a comprehensive survey of the major topics in the field of developmental biology. These volumes are valuable to researchers in animal and plant development, as well as to students and professionals who want an introduction to cellular and molecular mechanisms of development. The series has recently passed its 30-year mark, making it the longest-running forum for contemporary issues in developmental biology.

* Includes many descriptive figures
* Topics covered include the role of mitochondrial function, the use of ARTs to regulate mtDNA disease, nuclear transfer, and more
* Latest volume in the series that covers 10 reviews from leading authorities in developmental biology
Current Topics in Developmental Biology provides a comprehensive survey of the major topics in the field of developmental biology. These volumes are valuable to researchers in animal and plant development, as well as to students and professionals who want an introduction to cellular and molecular mechanisms of development. The series has recently passed its 30-year mark, making it the longest-running forum for contemporary issues in developmental biology. Includes many descriptive figures Topics covered include the role of mitochondrial function, the use of ARTs to regulate mtDNA disease, nuclear transfer, and more Latest volume in the series that covers 10 reviews from leading authorities in developmental biology

Front Cover 1
The Mitochondrion in the Germline and Early Development 4
Copyright Page 5
Contents 6
Contributors 10
Preface 14
Section I: The Mitochondrion and Gametes 16
Chapter 1: The Role of the Mitochondrion in Sperm Function: Is There a Place for Oxidative Phosphorylation or Is This a Purely Glycolytic Process? 18
I. Introduction 18
II. Spermiogenesis: Removing Everything But the Essential 19
III. Sperm Mitochondria Are Required for Functional Purposes 21
IV. Is Glycolysis Required for Sperm Motility? 24
V. Substrates Available for the Supply of Energy 26
VI. Concluding Remarks 28
Acknowledgments 29
References 29
Chapter 2: The Role of Mitochondrial Function in the Oocyte and Embryo 36
Abbreviations 37
I. Introduction 37
II. Mitochondrial Generation and Distribution in Eggs and Embryos 40
III. Studying Mitochondria in Eggs and Embryos 42
IV. Mitochondria and Energy Production in the Embryo 46
V. Mitochondria and Ca2+ Homeostasis in Eggs and Embryos 48
VI. Ca2+-Induced Mitochondrial Activity: Matching ATP Supply and Demand 49
VII. Mitochondria and Redox Metabolism in the Embryo 49
VIII. Impact of Mitochondrial Activity on Embryonic Development 52
IX. Mitochondria and Apoptosis in the Embryo 55
X. Conclusions and Perspectives 56
Acknowledgments 57
References 57
Chapter 3: Mitochondrial DNA in the Oocyte and the Developing Embryo 66
I. Introduction 67
II. Mitochondrial DNA Structure and Function 69
III. mtDNA Content in Oocytes 72
IV. Variation of mtDNA Content and Transcripts in Early Embryonic Development 80
V. mtDNA Mutations in Oocytes and Embryos 86
VI. Conclusions and Perspectives 89
References 89
Section II: Transmission 100
Chapter 4: Mitochondrial DNA and the Mammalian Oocyte 102
I. Introduction 103
II. mtDNA: Structure, Organization, Replication, and Expression 104
III. Origin and Development of the Germ Line 107
IV. Transmission of mtDNA in the Female Germ Line 110
V. OXPHOS, Atresia, and Oocyte Quality 113
VI. mtDNA Copy Number in the Oocyte 114
VII. Male Transmission of mtDNA 116
VIII. Clinical Perspectives 118
IX. Conclusions and Future Prospects 120
Acknowledgments 121
References 121
Chapter 5: Mitochondrial Disease—Its Impact, Etiology, and Pathology 128
I. Introduction 129
II. Mitochondrial Genetics 131
III. Impact 138
IV. Etiology 144
V. Pathology 152
VI. Conclusions 158
Acknowledgments 158
References 158
Chapter 6: Cybrid Models of mtDNA Disease and Transmission, from Cells to Mice 172
I. What Can Be Learned from Cybrids About mtDNA Disease? 173
II. Animal Modeling of mtDNA Transmission and Human Disease: From Transgenesis to Transmitochondrial Cybrid Models 184
III. Summary 191
References 191
Section III: The Use of Assisted Reproductive Technologies to Regulate mtDNA Disease 200
Chapter 7: The Use of Micromanipulation Methods as a Tool to Prevention of Transmission of Mutated Mitochondrial DNA 202
I. Biological Material: Oocytes and Zygotes 203
II. Technical Equipment 204
III. Germinal Vesicle Transfer 205
IV. Short- and Long-Term Storage of Nuclear Material and Asynchronous GV to Cytoplast Transfer 209
V. Chromosome Group Transfer 213
VI. Transfer of Pronuclei 218
VII. Conclusions 222
Acknowledgments 222
References 223
Chapter 8: Difficulties and Possible Solutions in the Genetic Management of mtDNA Disease in the Preimplantation Embryo 228
I. Heteroplasmy of mtDNA Presents Problems for Chorionic Villus Sampling 229
II. The Mitochondrial Bottleneck 232
III. Management Options Beyond CVS 235
References 238
Section IV: The Effects of Invasive Assisted Reproductive Technologies on mtDNA Transmission 242
Chapter 9: Impact of Assisted Reproductive Technologies: A Mitochondrial Perspective of Cytoplasmic Transplantation 244
I. Why Are Invasive Assisted Reproductive Technology Procedures Important? 245
II. Cytoplasmic Transfer: Animal Models That May Assist Human Infertility Therapeutics 247
III. The Mitochondrial Genome and Mitochondrial Biogenesis 248
IV. Molecular Control of Mitochondrial Function in Preimplantation Embryos 252
V. Mitochondrial Copy Number, Deletions, and Mutations 254
VI. Oocyte and Embryo Mitochondrial Localization Patterns 257
VII. Implications of Mitochondrial Heteroplasmy in Infertility, Mitochondrial Disease, and Stem Cell Therapeutics 258
References 259
Chapter 10: Nuclear Transfer: Preservation of a Nuclear Genome at the Expense of Its Associated mtDNA Genome(s) 266
I. Introduction 267
II. Adaptations to NT 267
III. Applications of NT 270
IV. Health Problems Associated with NT 272
V. Possible Causes of NT Failure 273
VI. Are All the Potential Reasons for Low Success Rates in NT Interlinked? 289
VII. Conclusions 292
References 292
Index 306
Contents of Previous Volumes 322

2

The Role of Mitochondrial Function in the Oocyte and Embryo


Rémi Dumollard*,,†; Michael Duchen*; John Carroll*    * Department of Physiology, University College London London WC1E 6BT, United Kingdom
† Laboratoire de Biologie du Développement, UMR 7009 CNRS/UPMC Station Zoologique, Observatoire, 06230 Villefranche-sur-Mer, France

Abstract


Mitochondria have long been known to be the powerhouses of the cell but they also contribute to redox and Ca2+ homeostasis, provide intermediary metabolites and store proapoptotic factors. Mitochondria have a unique behavior during development. They are maternally transmitted with little (if any) paternal contribution, and they originate from a restricted founder population, which is amplified during oogenesis. Then, having established the full complement of mitochondria in the fully grown oocyte, there is no further increase of the mitochondrial population during early development. The localization of mitochondria in the egg during maturation and their segregation to blastomeres in the cleaving embryo are strictly regulated. Gradients in the distribution of mitochondria present in the egg have the potential to give rise to blastomeres receiving different numbers of mitochondria. Such maternally inherited differences in mitochondrial distribution are thought to play roles in defining the long-term viability of the blastomere in some cases and embryonic axes and patterning in others. Mitochondria may also regulate development by a number of other means, including modulating Ca2+ signaling, and the production of ATP, reactive oxygen species, and intermediary metabolites. If the participation of mitochondria in the regulation of sperm-triggered Ca2+ oscillations is now well established, the role of other properties of mitochondrial function during development remain largely unexplored probably due to the difficulty of accessing the mitochondrial compartment in an embryo. Maintaining a functional complement of maternally derived mitochondria is vital for the early embryo. Mitochondrial dysfunction may not only compromise developmental processes but also trigger apoptosis in the embryo. This dual role for mitochondria (to maintain life or to commit to cell death) may well represent a quality control system in the early embryo that will determine whether the embryo proceeds further into development or is quickly eliminated. © 2007, Elsevier Inc.

Abbreviations

ATP adenosine trisphosphate

Ca2+]c cytosolic Ca2+ concentration

Ca2+]m mitochondrial Ca2+ concentration

Cn− cyanide

ER endoplasmic reticulum

GFP green fluorescent protein

GSH reduced glutathione

GV germinal vesicle

H2O2 hydrogen peroxide

IICR IP3-induced Ca2+ release

IP3 inositol 3,4,5 trisphosphate

IRP intracellular redox potential

mtDNA mitochondrial DNA

NADPH reduced nicotinamide adenine dinucleotide phosphate

O2 oxygen

O2− superoxide

ROS reactive oxygen species

I Introduction


Long known to be the “powerhouses” of the cell, mitochondria are now understood to be central to diverse cellular functions. The complexity and pervasiveness of mitochondrial activity is reflected in their contribution to diverse signaling pathways and intracellular processes. In fact, in addition to producing most of the cell’s ATP (Ernster and Schatz, 1981), mitochondria can sequester and release Ca2+, cytochrome c, and proteins (Duchen, 2000; Kroemer, 2003). They also produce reactive oxygen species (ROS), reducing equivalents [such as NAD(P)H/NAD(P)+] and intracellular metabolites (such as Krebs cycle intermediates) (Brookes et al., 2004; Duchen, 2000; MacDonald et al., 2005; Pagliarini and Dixon, 2006; Turrens, 2003). These mitochondrial activities ensure that mitochondria play a central role in cellular processes such as Ca2+ handling and Ca2+ signaling, the regulation of intracellular redox potential (IRP), and control of apoptosis, and they may well be the mediators of cellular and organismal aging (Balaban et al., 2005).

One peculiarity of mitochondria in development is that they are inherited maternally and independently of the nuclear genome (Cummins, 2000; Dawid and Blackler, 1972; Jansen, 2000; Shoubridge, 2000). Strikingly, the growth of the mitochondrial population in the embryo is discontinuous with a growing burst during oogenesis followed by an arrest of replication during cleavage stages until mitochondrial replication resumes after gastrulation (Dumollard et al., 2006a and references therein). Thus, embryonic mitochondria all originate from a restricted founder population present in the primordial germ cell, which is amplified during oogenesis. This pattern of mitochondrial replication provides a genetic “bottleneck” ensuring a homoplasmic population of mitochondria in the embryo even though mitochondrial DNA is prone to mutations (reviewed by Shoubridge and Wai in Chapter 4, this volume). Such homoplasmy is vital for the survival of each blastomere of the cleaving embryo, which depends on inheriting a functional complement of mitochondria from the egg.

Another consequence of such segregation of mitochondria during cleavage is that any heterogeneity in the distribution of mitochondria in the mature egg will be maintained during early development to give rise to blastomeres with different mitochondrial load, thereby potentially conferring a different developmental fate. An extreme example of this phenomenon is found in the determination of germ cells. Oocytes of many organisms (amphibians, fishes, insects, planarians, chaetognaths, nematodes, and some mammals) possess a cytoplasmic structure rich in mitochondria (called the germ plasm or nuage or Balbiani body or pole plasm) that segregates with the germ line and is necessary for its specification (Kloc et al., 2004). The mitochondria of the germ plasm are selected during oogenesis and aggregate with germ line determinants before they are relocated in the vegetal cortex of the egg (reviewed in Dumollard et al., 2006a; Kloc et al., 2004). Other eggs and embryos display gradients in the distribution of somatic mitochondria that may impact embryo patterning and such gradients may well be maternal factors influencing embryonic cell fate.

The activity of mitochondria in early mammalian embryos has been under investigation for many years. Oocytes and embryos have a relatively low oxygen consumption and electron microscopy shows that embryonic mitochondria have fewer and shorter cristae than mitochondria from metabolically active cells found in adult tissues (Trimarchi et al., 2000 and references therein). These observations led to the hypothesis that embryonic mitochondria are immature and with little capacity for respiratory activity (Houghton and Leese, 2004; Trimarchi et al., 2000). However, the pattern of consumption of energetic substrates seen in mammalian embryos (Biggers et al., 1967; Brinster, 1965; Johnson et al., 2003; Quinn and Wales, 1973) as well as pharmacological approaches undertaken on mammalian and ascidian embryos (Dumollard et al., 2003, 2004, 2006a) suggest that mitochondrial activity is crucial for the activation of development and for embryonic survival. Indeed, even though each mitochondrion may have a low level of metabolism, the concerted action of the large complement of embryonic mitochondria (from tens of thousands to tens of millions per egg or early embryo) is absolutely critical for the supply of energy in the embryo.

After being unanimously recognized in the 1990s as crucial players in intracellular Ca2+ signaling of somatic cells, mitochondria have been shown to be involved in the regulation of sperm-triggered Ca2+ oscillations during ascidian and mouse fertilization (reviewed in Dumollard et al., 2006a). These studies revealed intricate relationships between mitochondrial activity and Ca2+ dynamics. In particular, endoplasmic reticulum (ER) Ca2+ release stimulates mitochondrial respiration and, in return, mitochondrial activity supports long-lasting sperm-triggered Ca2+ oscillations (Dumollard et al., 2006a). Such interactions are advantageous to mitochondria by allowing a fine matching of energetic supply to energetic demand, which may be necessary for embryonic mitochondria to survive until mitochondrial renewal starts.

The oxidative metabolism associated with mitochondrial activity also confers a major role for mitochondria in the regulation of the IRP and oxidative load in the embryo. Mitochondria can have an impact on the IRP by regulating the NAD(P)H/NAD(P)+ ratio and by producing ROS (Brookes et al., 2004; Duchen,...

Erscheint lt. Verlag 17.1.2007
Mitarbeit Herausgeber (Serie): Gerald P. Schatten
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie Allgemeines / Lexika
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zellbiologie
ISBN-10 0-08-047113-7 / 0080471137
ISBN-13 978-0-08-047113-6 / 9780080471136
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 8,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 7,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
DNA, RNA, Mutationen, Klonierung und Co. verstehen

von Tara Rodden Robinson; Lisa J. Spock

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
17,99