Monoethylene Glycol as Hydrate Inhibitor in Offshore Natural Gas Processing - Alexandre Mendonça Teixeira, Lara de Oliveira Arinelli, José Luiz de Medeiros, Ofélia de Queiroz Fernandes Araújo

Monoethylene Glycol as Hydrate Inhibitor in Offshore Natural Gas Processing

From Fundamentals to Exergy Analysis
Buch | Softcover
XVI, 114 Seiten
2017 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-66073-8 (ISBN)
53,49 inkl. MwSt

This book addresses several issues related to hydrate inhibition and monoethylene glycol (MEG) recovery units (MRUs) in offshore natural gas fields, from fundamentals to engineering aspects and from energy consumption assessment to advanced topics such as exergy analysis. The assessment of energy degradation in MRUs is critical in offshore rigs, and the topic of exergy theory has by no means been completely explored; it is still being developed. The book presents a comprehensive, yet concise, formulation for exergy flow and examines different approaches for the reference state of MEG and definition of the reference environment so as to obtain an effective exergy analysis with consistent results.

It also provides new and useful information that has a great potential in the field of exergy analysis application by assessing energy degradation for three well-known MRU technologies on offshore rigs: the Traditional Atmospheric Distillation Process; the Full-Stream Process; and the Slip-Stream Process. The book then elucidates how the main design parameters impact the efficiency of MEG recovery units and offers insights into thermodynamic efficiency based on case studies of general distillation-based processes with sharp or not too sharp cut, providing ranges for expected values of efficiencies and enhancing a global comprehension of this subject. Since MEG recovery is an energy consuming process that invariably has to be conducted in a limited space and with limited power supply, the book is a valuable resource for those involved in design, engineering, economic evaluation and environmental evaluation of topside processing on offshore platforms for natural gas production.

Alexandre M. Teixeira: He is a chemical engineer, holds a M.Sc. degree with emphasis in oil and gas field, is currently a D.Sc. student and works in a project in a partnership with Petrobras. He has experience in the field of process engineering, focusing his research on flow assurance in offshore platforms, energy efficiency and natural gas processing. He gained an outstanding scholar award (undergraduate student) in 2012 due to his academic performance and B. Sc. with honors (cum laude), and in 2014 won the best M.Sc. thesis award from Escola de Química of the Federal University of Rio de Janeiro. Lara de O. Arinelli: She is graduated in Chemical Engineering by the Federal University of Rio de Janeiro, Brazil, and holds a M.Sc. degree with emphasis in process engineering, specifically in the oil and gas field. She is currently a D.Sc. student, while working in parallel in a research project with Petrobras. The main theme of her thesis is natural gas processing, focusing on the development of unit operation extensions of membranes and supersonic separation for simulation purposes. Lara gained an outstanding scholar award (undergraduate student) in 2012 due to her academic performance, B.Sc. degree with honors (cum laude) and in 2015 won the best M.Sc. thesis award from Escola de Química of the Federal University of Rio de Janeiro.

Chapter 1. Introduction.- Chapter 2. Hydrate Formation and Inhibition in Offshore Natural Gas Processing.- Chapter 3.MEG Loops in Offshore Natural Gas Fields.- Chapter 4.Thermodynamics of Glycol Systems.- Chapter 5.MRU Processes.- Chapter 6. Energy Consumption and CO2 Emission of MRU Processes.- Chapter 7.Thermodynamic Efficiency of Steady State Operations of MRUs.- Chapter 8.Exergy Analysis of Chemical Processes.- Chapter 9.Exergy Analysis of MRU Processes in Offshore Platforms.- Chapter 10.Influence of Design Parameters on Exergy Efficiencies of MRU Processes.- Chapter 11.Energy Performance versus Exergy Performance of MRU Processes.- Chapter 12.Concluding Remarks.

Erscheinungsdatum
Reihe/Serie SpringerBriefs in Petroleum Geoscience & Engineering
Zusatzinfo XVI, 114 p. 37 illus., 36 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 212 g
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte earth sciences • Energy • Energy technology & engineering • Energy technology & engineering • engineering thermodynamics • Engineering Thermodynamics, Heat and Mass Transfer • exergy analysis of chemical processes • exergy analysis of meg recovery units • Flow Assurance in Offshore Exploration • Fossil Fuels (incl. Carbon Capture) • Fossil fuel technologies • Geotechnical Engineering & Applied Earth Sciences • Geotechnical Engineering & Applied Earth Sciences • hydrate inhibition and natural gas • meg recovery units • monoethylene glycol as hydrate inhibitor • monoethylene glycol recovery units • monoethylene glycol regeneration and reclamation • regeneration of thermodynamic hydrate inhibitors • thermodynamic hydrate inhibitor
ISBN-10 3-319-66073-X / 331966073X
ISBN-13 978-3-319-66073-8 / 9783319660738
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Mit Hightech auf der Suche nach Öl, Gas und Erdwärme

von Matthias Reich

Buch | Softcover (2022)
Springer (Verlag)
24,99