Monoethylene Glycol as Hydrate Inhibitor in Offshore Natural Gas Processing (eBook)

From Fundamentals to Exergy Analysis
eBook Download: PDF
2017 | 1st ed. 2018
XVI, 114 Seiten
Springer International Publishing (Verlag)
978-3-319-66074-5 (ISBN)

Lese- und Medienproben

Monoethylene Glycol as Hydrate Inhibitor in Offshore Natural Gas Processing - Alexandre Mendonça Teixeira, Lara de Oliveira Arinelli, José Luiz de Medeiros, Ofélia de Queiroz Fernandes Araújo
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book addresses several issues related to hydrate inhibition and monoethylene glycol (MEG) recovery units (MRUs) in offshore natural gas fields, from fundamentals to engineering aspects and from energy consumption assessment to advanced topics such as exergy analysis. The assessment of energy degradation in MRUs is critical in offshore rigs, and the topic of exergy theory has by no means been completely explored; it is still being developed. The book presents a comprehensive, yet concise, formulation for exergy flow and examines different approaches for the reference state of MEG and definition of the reference environment so as to obtain an effective exergy analysis with consistent results.

It also provides new and useful information that has a great potential in the field of exergy analysis application by assessing energy degradation for three well-known MRU technologies on offshore rigs: the Traditional Atmospheric Distillation Process; the Full-Stream Process; and the Slip-Stream Process. The book then elucidates how the main design parameters impact the efficiency of MEG recovery units and offers insights into thermodynamic efficiency based on case studies of general distillation-based processes with sharp or not too sharp cut, providing ranges for expected values of efficiencies and enhancing a global comprehension of this subject. Since MEG recovery is an energy consuming process  that invariably has to be conducted in a limited space and with limited power supply, the book is a valuable resource for those involved in design, engineering, economic evaluation and environmental evaluation of topside processing on offshore platforms for natural gas production.



Alexandre M. Teixeira: He is a chemical engineer, holds a M.Sc. degree with emphasis in oil and gas field, is currently a D.Sc. student and works in a project in a partnership with Petrobras. He has experience in the field of process engineering, focusing his research on flow assurance in offshore platforms, energy efficiency and natural gas processing. He gained an outstanding scholar award (undergraduate student) in 2012 due to his academic performance and B. Sc. with honors (cum laude), and in 2014 won the best M.Sc. thesis award from Escola de Química of the Federal University of Rio de Janeiro.

Lara de O. Arinelli: She is graduated in Chemical Engineering by the Federal University of Rio de Janeiro, Brazil, and holds a M.Sc. degree with emphasis in process engineering, specifically in the oil and gas field. She is currently a D.Sc. student, while working in parallel in a research project with Petrobras. The main theme of her thesis is natural gas processing, focusing on the development of unit operation extensions of membranes and supersonic separation for simulation purposes. Lara gained an outstanding scholar award (undergraduate student) in 2012 due to her academic performance, B.Sc. degree with honors (cum laude) and in 2015 won the best M.Sc. thesis award from Escola de Química of the Federal University of Rio de Janeiro.

Prof. Dr. José Luiz de Medeiros: He graduated in Chemical Engineering at Federal University of Rio de Janeiro (1980), Brazil. He earned MSc (1982) and DSc (1990) Chemical Engineering degrees from the same institution. He is currently an Assistant Professor in the Department of Chemical Engineering at Federal University of Rio de Janeiro since 1990. He has experience in several sectors of chemical engineering with emphasis in Petroleum, Natural Gas and Petrochemistry, with several published works in the following research lines: Applied Thermodynamics, Separation Processes, Process Identification & Optimization, Statistical & Mathematical Methods. His fields of study concentrate on Compositional Modeling, Hydro-treatment & Hydrocracking of Oil Fractions, Compressible & Incompressible Flows and Associate Separation Technologies, Flow Assurance in Natural Gas Systems, Pipeline Network Modeling for Natural Gas & Oil Transportation, Leak Detection in Compressible & Incompressible Pipeline Networks, Chemical Sequestration of CO2 , Capture of CO2 & H2S from Natural Gas via Membrane Permeation and Technologies of Contact with Aqueous Ethanolamines.

Prof. Dr. Ofélia de Queiroz Fernandes Araújo: She holds a PhD (1987) and MSc (1984) degrees in Chemical Engineering from the University of Illinois at Urbana-Champaign (USA), and BSc in Chemical Engineering from the Federal University of Rio de Janeiro (1981), Brazil. Worked at NATRON SA (1987-198) and OXITENO SA (1989-1993) in process simulation and control engineering. Joined the Federal University of Rio de Janeiro, in 1993, in the Chemical Engineering Department, where she is currently Associate Professor. Her research interests are process and environmental engineering, with special focus in natural gas processing, and CO2 separation and utilization, and green engineering. She was head of two graduate programs - Technology of Chemical and Biochemical Processes (2007-2010) and Environmental Engineering (2014-2015).

Alexandre M. Teixeira: He is a chemical engineer, holds a M.Sc. degree with emphasis in oil and gas field, is currently a D.Sc. student and works in a project in a partnership with Petrobras. He has experience in the field of process engineering, focusing his research on flow assurance in offshore platforms, energy efficiency and natural gas processing. He gained an outstanding scholar award (undergraduate student) in 2012 due to his academic performance and B. Sc. with honors (cum laude), and in 2014 won the best M.Sc. thesis award from Escola de Química of the Federal University of Rio de Janeiro. Lara de O. Arinelli: She is graduated in Chemical Engineering by the Federal University of Rio de Janeiro, Brazil, and holds a M.Sc. degree with emphasis in process engineering, specifically in the oil and gas field. She is currently a D.Sc. student, while working in parallel in a research project with Petrobras. The main theme of her thesis is natural gas processing, focusing on the development of unit operation extensions of membranes and supersonic separation for simulation purposes. Lara gained an outstanding scholar award (undergraduate student) in 2012 due to her academic performance, B.Sc. degree with honors (cum laude) and in 2015 won the best M.Sc. thesis award from Escola de Química of the Federal University of Rio de Janeiro. Prof. Dr. José Luiz de Medeiros: He graduated in Chemical Engineering at Federal University of Rio de Janeiro (1980), Brazil. He earned MSc (1982) and DSc (1990) Chemical Engineering degrees from the same institution. He is currently an Assistant Professor in the Department of Chemical Engineering at Federal University of Rio de Janeiro since 1990. He has experience in several sectors of chemical engineering with emphasis in Petroleum, Natural Gas and Petrochemistry, with several published works in the following research lines: Applied Thermodynamics, Separation Processes, Process Identification & Optimization, Statistical & Mathematical Methods. His fields of study concentrate on Compositional Modeling, Hydro-treatment & Hydrocracking of Oil Fractions, Compressible & Incompressible Flows and Associate Separation Technologies, Flow Assurance in Natural Gas Systems, Pipeline Network Modeling for Natural Gas & Oil Transportation, Leak Detection in Compressible & Incompressible Pipeline Networks, Chemical Sequestration of CO2 , Capture of CO2 & H2S from Natural Gas via Membrane Permeation and Technologies of Contact with Aqueous Ethanolamines. Prof. Dr. Ofélia de Queiroz Fernandes Araújo: She holds a PhD (1987) and MSc (1984) degrees in Chemical Engineering from the University of Illinois at Urbana-Champaign (USA), and BSc in Chemical Engineering from the Federal University of Rio de Janeiro (1981), Brazil. Worked at NATRON SA (1987-198) and OXITENO SA (1989-1993) in process simulation and control engineering. Joined the Federal University of Rio de Janeiro, in 1993, in the Chemical Engineering Department, where she is currently Associate Professor. Her research interests are process and environmental engineering, with special focus in natural gas processing, and CO2 separation and utilization, and green engineering. She was head of two graduate programs - Technology of Chemical and Biochemical Processes (2007-2010) and Environmental Engineering (2014-2015).

1. Introduction  2. Hydrate Formation and Inhibition in Offshore Natural Gas Processing  3. MEG Loops in Offshore Natural Gas Fields  4. Thermodynamics of Glycol Systems  5. MRU Processes            5.1. Traditional Process (TP)               5.2. Full-Stream Process     5.3. Slip-Stream Process (SS) 6. Energy consumption and CO2 Emission of MRU Processes      6.1. MRU Process Assumptions               6.1.1. Power, Heating and Cooling Resources Available to Offshore MRUs        6.2. TP Implementation          6.3. FS Implementation           6.4. SS Implementation           6.5. Heat, Power, Utility Consumptions and CO2 Emissions Results 7. Thermodynamic Efficiency of Steady State Operations of MRUs     7.1. Thermodynamic Efficiency of Binary Distillation Column               7.1.1. Determination of Steady-State Operation Reflux Ratio and Corresponding Heat Duties                   7.1.2. Minimum Power Required for Steady-State Separation at Constant T & P                7.1.3. Actual Equivalent Power Consumption of a Steady-State Binary Distillation Column via the Method of Carnot Equivalent Cycles                  7.1.4. Thermodynamic Efficiency of a Steady-State Binary Distillation Column              7.2. Multicomponent Distillation Column with Specified Propylene-Propane Sharp Cut           7.2.1. Design of Steady-State Multicomponent Distillation: Determination of Size, Reflux Ratio,Feed Location and Heat Duties                    7.2.2. Minimum Power Required for Steady-State Propylene-Propane Separation              7.2.3. Actual Equivalent Power Consumption of Steady-State Propylene-Propane Distillation Column via the Method of Carnot Equivalent Cycles            7.2.4. Thermodynamic Efficiency of a Steady-State Propylene-Propane Distillation Column                 7.3. Thermodynamic Efficiency of a Steady-State Process with Several Power Consuming Operations            8. Exergy Analysis of Chemical Processes      8.1. Steady-State Chemical Processes        9. Exergy Analysis of MRU Processes in Offshore Platforms     9.1. RER Approach #1                         9.2. RER Approach #2     9.3. Results of Exergy Analysis of MRUs     9.4. Consistency Cross-Check of Exergy Analysis            10. Influence of Design Parameters on Exergy Efficiencies of MRU Processes 11. Energy Performance versus Exergy Performance of MRU Processes     11.1. Modification of MRU Processes for Better Exergy Usage under Constant Energy Usage               12. Concluding Remarks  

Erscheint lt. Verlag 15.9.2017
Reihe/Serie SpringerBriefs in Petroleum Geoscience & Engineering
Zusatzinfo XVI, 114 p. 37 illus., 36 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Schlagworte exergy analysis of chemical processes • exergy analysis of meg recovery units • Flow Assurance in Offshore Exploration • hydrate inhibition and natural gas • meg recovery units • monoethylene glycol as hydrate inhibitor • monoethylene glycol recovery units • monoethylene glycol regeneration and reclamation • regeneration of thermodynamic hydrate inhibitors • thermodynamic hydrate inhibitor
ISBN-10 3-319-66074-8 / 3319660748
ISBN-13 978-3-319-66074-5 / 9783319660745
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99