Oscillation and Stability of Delay Models in Biology
Springer International Publishing (Verlag)
978-3-319-38139-8 (ISBN)
1. Logistic Models.- 2. Oscillation of Delay Logistic Models.- 3. Stability of Delay Logistic Models.- 4. Logistic Models with Piecewise Arguments.- 5. Food-Limited Population Models.- 6. Logistic Models with Diffusions.
"The text under review collects under a single cover a number of important theoretical results on delay differential equations, both ordinary and partial; these results can be applied for the analysis of relevant mathematical models of population dynamics. ... This text is a valuable resource for researchers and graduate students in mathematics who study stability properties and oscillation of solutions for various classes of delay differential equations; it contains many useful mathematical results and a rich list of references." (Svitlana P. Rogovchenko, Mathematical Reviews, February, 2016)
"This book concerns the behaviour of a particular class of delay differential equations ... . The book should be of interest to those interested in proving results about the behaviour of delay differential equations." (Carlo Laing, zbMATH 1312.37001,2015)
Erscheinungsdatum | 22.09.2016 |
---|---|
Zusatzinfo | X, 340 p. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Naturwissenschaften ► Biologie ► Evolution | |
Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
Schlagworte | Applied mathematics • Delay differential equations • delay models • Dynamical Systems and Ergodic Theory • ecological dynamical systems • Fixed-Point Theory • Genetics and Population Dynamics • Mathematics • mathematics and statistics • Nonlinear Science • oscillation theory • Stability Theory |
ISBN-10 | 3-319-38139-3 / 3319381393 |
ISBN-13 | 978-3-319-38139-8 / 9783319381398 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich