Future Directions in Biocatalysis -

Future Directions in Biocatalysis (eBook)

Tomoko Matsuda (Herausgeber)

eBook Download: EPUB
2011 | 1. Auflage
364 Seiten
Elsevier Science (Verlag)
978-0-08-054526-4 (ISBN)
Systemvoraussetzungen
198,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In Future Directions in Biocatalysis the important topics within biocatalysis and enzymatic catalysis for organic synthesis are described for both experts and non-experts. This books focuses particularly on reactions under development at present and on future advances in the field.
Consisting of four sections, this book examines enzymatic reactions under unusual conditions, unique biocatalytic reactions, synthesis of valuable compounds using biocatalysis and the latest molecular biology methods for biocatalysis. Each chapter deals with a specific theme and includes a summary of each area as well as the present state and future direction of research.
* Describes methods for solving environmental issues through biocatalysis
* Presents the integrated fields of biochemistry and organic chemistry
* Unique research topics with high originality
In Future Directions in Biocatalysis the important topics within biocatalysis and enzymatic catalysis for organic synthesis are described for both experts and non-experts. This books focuses particularly on reactions under development at present and on future advances in the field. Consisting of four sections, this book examines enzymatic reactions under unusual conditions, unique biocatalytic reactions, synthesis of valuable compounds using biocatalysis and the latest molecular biology methods for biocatalysis. Each chapter deals with a specific theme and includes a summary of each area as well as the present state and future direction of research.* Describes methods for solving environmental issues through biocatalysis* Presents the integrated fields of biochemistry and organic chemistry* Unique research topics with high originality

Cover 1
Table of Contents 6
Preface 12
Part 1 Novel reaction conditions for biotransformation 14
CHAPTER 1 Biotransformation in ionic liquid 16
1. Introduction 16
2. Ionic Liquids as a Reaction Medium for Biotransformation 16
3. Lipase-Catalyzed Reaction in an Ionic Liquid Solvent System 20
4. Activation of Lipase by an Ionic Liquid 23
5. Various Biotransformations in an Ionic Liquid Solvent System 28
6. Concluding Remarks 31
References 31
CHAPTER 2 Temperature control of the enantioselectivity in the lipase-catalyzed resolutions 34
1. Introduction 34
2. Finding of the Low-Temperature MethodŽ in the Lipase-Catalyzed Kinetic Resolution 35
3. Theory of Temperature Effect on the Enantioselectivity 36
4. General Applicability of the Low-Temperature MethodŽ Examined 41
4.1. Application to solketal and other primary and secondary alcohols 41
4.2. Resolution of (±)-2-hydroxy-2-(pentafluorophenyl)acetonitrile 43
4.3. Immobilization of lipase on porous ceramic support (Toyonite) for acceleration 44
4.4. Structural optimization of organic bridges on Toyonite 45
4.5. Practical resolution of azirine 1 by the low-temperature methodŽ combined with Toyonite-immobilized lipase and optimized acylating agent 46
4.6. Resolution of (2R*, 3S*)- and (2R*, 3R*)-3-methyl-3-phenyl-2-aziridinemethanols 47
4.7. Resolution of 5-(hydroxymethyl)-3-phenyl-2-isoxazoline 49
4.8. Application of temperature control to asymmetric protonation 50
4.9. Lipase-catalyzed resolutions at high temperatures up to 120°C 50
5. Low-Temperature Reactions in Literatures 50
6. Lipase-Catalyzed Resolution of Primary Alcohols: Promising Candidates for the Low-Temperature MethodŽ 53
7. Conclusion 58
References 58
CHAPTER 3 Future directions in photosynthetic organisms-catalyzed reactions 64
1. Introduction 64
2. Reduction Reaction 64
3. Oxidation and Hydroxylation 68
4. Removal of Organic and Inorganic Substances in Wastewater 69
5. Conclusion 70
References 70
CHAPTER 4 Catalysis by enzyme–metal combinations 72
1. Introduction 72
2. Dynamic Kinetic Resolutions by Enzyme–Metal Combinations 73
2.1. DKR of secondary alcohols 73
3. Asymmetric Transformations by Enzyme–Metal Combinations 86
3.1. Asymmetric transformation of ketone 86
3.2. Asymmetric transformation of enol ester 88
3.3. Asymmetric transformation of ketoxime 89
4. Conclusion 91
Acknowledgements 91
References 92
Part 2 Uncomon kind of biocatalytic reaction 94
CHAPTER 5 Biological Kolbe–Schmitt carboxylation 96
1. Introduction 96
2. Enzymes Catalyzing the Carboxylation of Phenolic Compounds 97
2.1. 4-Hydroxybenzoate decarboxylase (EC 4.1.1.61) 98
2.2. 3,4-Dihydroxybenzoate decarboxylase (EC 4.1.1.63) 100
2.3. Phenolphosphate carboxylase (EC 4.1.1.-) in Thauera aromatica 101
2.4. 2,6-Dihydroxybenzoate decarboxylase 104
2.5. 2,3-Dihydroxybenzoate decarboxylase 108
3. Enzymes Catalyzing the Direct Carboxylation of Heterocyclic Compounds 108
3.1. Pyrrole-2-carboxylate decarboxylase 109
3.2. Indole-3-carboxylate decarboxylase 112
4. Structure Analysis of Decarboxylases Catalyzing CO2 Fixation 114
4.1. Class I decarboxylases 115
4.2. Class II decarboxylases 116
4.3. Phenylphosphate carboxylase 116
5. Conclusion 116
References 117
CHAPTER 6 Discovery, redesign and applications of Baeyer–Villiger monooxygenases 120
1. Introduction 120
2. Biocatalytic Properties of Recombinant Available BVMOs 123
2.1. Discovery of novel BVMOs 125
2.2. Exploring sequenced (meta)genomes for novel BVMOs 127
2.3. Screening the metagenome for novel BVMOs 131
2.4. Redesign of BVMOs 132
3. Conclusions: Future Directions 135
References 138
CHAPTER 7 Enzymes in aldoxime–nitrile pathway: versatile tools in biocatalysis 142
1. Introduction 142
2. Screening for New Microbial Enzymes by Enrichment and Acclimation Culture Techniques 142
3. Development of Nitrile-Degrading Enzymes 144
4. Screening for Heat-Stable NHase 144
5. Screening for NHase with PCR 145
6. Nitrile Synthesis Using a New Enzyme, Aldoxime Dehydratase 146
6.1. Aldoxime-converting enzymes 146
6.2. Isolation of microorganisms having aldoxime dehydratase activity 147
6.3. Purification, characterization and primary structure determination of aldoxime dehydratase 147
6.4. Synthesis of nitriles from aldoxime with aldoxime dehydratase 148
6.5. Distribution of aldoxime dehydratase 149
6.6. Molecular screening for aldoxime.nitrile pathwayŽ 149
7. Conclusions 150
Acknowledgements 150
References 150
CHAPTER 8 Addition of hydrocyanic acid to carbonyl compounds 154
1. Introduction 154
2. Optimized Reaction Conditions for the HNL-Catalyzed Formation of Chiral Cyanohydrins 156
3. Synthetic Potential of Chiral Cyanohydrins in Stereoselective Synthesis 158
3.1. Chiral 2-hydroxy carboxylic acids 158
3.2. Optically active 1,2-amino alcohols 160
3.3. Stereoselective substitution of the hydroxyl group in chiral cyanohydrins 161
3.4. Stereoselective synthesis of substituted cyclohexanone cyanohydrins 162
4. Crystal Structures of Hydroxynitrile Lyases and Mechanism of Cyanogenesis 162
4.1. Crystal structures of HNLs 164
4.2. Reaction mechanism of cyanogenesis 164
4.3. Changing substrate specificity and stereoselectivity applying Trp128 mutants of wt-MeHNL 165
5. Conclusions 166
References 167
Part 3 Novel compounds synthesized by biotransformations 170
CHAPTER 9 Chiral heteroatom-containing compounds 172
1. Introduction 172
2. Organosulfur Compounds 173
2.1. C-chiral hydroxy sulfides and derivatives 173
2.2. C-chiral hydroxyalkyl sulfones 176
2.3. C-chiral alkyl sulfates 178
2.4. Other C-chiral organosulfur compounds 179
2.5. S-chiral sulfinylcarboxylates 179
2.6. S-chiral hydroxy sulfoxides 181
2.7. S-chiral sulfinamides 182
2.8. S-chiral sulfoximines 184
3. Organophosphorus Compounds 185
3.1. C-chiral hydroxy phosphorus derivatives 185
3.2. C-chiral amino phosphorus compounds 193
3.3. P-chiral phosphoro-acetates 196
3.4. P-chiral hydroxy phosphoryl compounds 199
3.5. P-chiral hydroxy phosphorus P-boranes 204
3.6. Stereocontrolled transformations of organophosphorus acid esters 205
4. Organosilanes 209
5. Organogermanes 210
6. Future Perspectives 210
References 212
CHAPTER 10 Enzymatic polymerization 218
1. Introduction 218
2. Enzymatic Synthesis of Polyesters 219
2.1. Ring-opening polymerization to polyesters 220
2.2. Polycondensation of dicarboxylic acid derivatives and glycols to polyesters 225
2.3. Enzymatic synthesis of functional polyesters 232
3. Enzymatic Synthesis of Phenolic Polymers 241
3.1. Enzymatic oxidative polymerization of phenols 241
3.2. Enzymatic synthesis of functional phenolic polymers 246
3.3. Artificial urushi 251
3.4. Enzymatic synthesis and biological properties of flavonoid polymers 253
4. Concluding Remarks 257
References 258
CHAPTER 11 Synthesis of naturally occurring ß-D-glucopyranosides based on enzymatic ß-glucosidation using ß-glucosidase from almond 266
1. Introduction 266
2. Synthesis of ß-D-Glucopyranoside Under Kinetically Controlled Condition 268
2.1. Synthesis of naturally occurring ß-D-glucopyranoside 272
3. Synthesis of ß-D-Glucopyranoside Under Equilibrium-Controlled Condition 275
3.1. Immobilization of ß-D-glucosidase using prepolymer 276
3.2. Enzymatic transglucosidation 276
3.3. Synthesis of naturally occurring benzyl ß-D-glucopyranoside 280
3.4. Synthesis of phenethyl ß-D-glucopyranoside 283
3.5. Synthesis of (3Z)-hexenyl ß-D-glucopyranoside 285
3.6. Synthesis of geranyl ß-D-glucopyranoside 288
3.7. Synthesis of Sacranosides A (89) and B (90) 290
3.8. Synthesis of naturally occurring n-octyl ß-D-glucopyranosides 291
3.9. Synthesis of naturally occurring hexyl ß-D-glucopyranosides 293
3.10. Synthesis of naturally occurring phenylpropenoid ß-D-glucopyranoside 295
4. Future Aspect 300
5. Conclusion 302
References 302
Part 4 Use of molecular biology technique to find novel biocatalyst 304
CHAPTER 12 Future directions in alcohol dehydrogenase-catalyzed reactions 306
1. Introduction 306
2. Future Progress in the Discovery Phase of Dehydrogenases 308
2.1. Accurately predicting dehydrogenase structures 308
2.2. Predicting dehydrogenase substrate acceptance and stereoselectivities 309
2.3. Rapid screening of novel dehydrogenases 309
2.4. Dehydrogenases for large substrates 312
2.5. Dehydrogenase modules within larger assemblies as monofunctional catalysts 312
2.6. Dehydrogenase catalysis of other 1,2-carbonyl additions 313
3. Future Progress in Dehydrogenase Process Development 313
3.1. Improving the kinetic properties of dehydrogenases 314
3.2. Reductions of highly hydrophobic substrates 314
3.3. Cofactorless dehydrogenases? 315
4. Conclusions 315
Acknowledgements 316
References 316
CHAPTER 13 Enzymatic decarboxylation of synthetic compounds 318
1. Introduction 318
2. Arylmalonate Decarboxylase 322
2.1. Discovery of arylmalonate decarboxylase and its substrate specificity 323
2.2. Purification of the enzyme and cloning of the gene 324
2.3. Reaction mechanism 325
2.4. Inversion of enantioselectivity based on the reaction mechanism and homology 330
2.5. Addition of racemase activity 332
3. Transketolase-Catalyzed Reaction 334
3.1. Substrate specificity and stereochemical source of TKase-catalyzed reaction 335
3.2. Application of TKase-catalyzed reaction in organic syntheses 335
3.3. Tertiary structure and mutagenesis studies 342
4. Future Trends of this Area 344
4.1. Application of decarboxylation reaction to dialkylmalonates 344
4.2. Decarboxylation of various carboxylic acids 345
4.3. Oxidative decarboxylation of ß-hydroxycarboxylic acids 346
4.4. Carboxylation 349
4.5. Development of biotransformation via enolate 350
4.6. Utilization of database and informatics 352
5. Conclusion 352
References 353
Index 358

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99