Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications -

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications

Buch | Softcover
280 Seiten
2024
CRC Press (Verlag)
978-1-032-12764-4 (ISBN)
57,35 inkl. MwSt
The book incorporates the many facets of computational intelligence, such as machine learning and deep learning, to provide groundbreaking developments in healthcare applications. It discusses theory, analytical methods, numerical simulation, scientific techniques, analytical outcomes, and computational structuring.
Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications introduces and explores a variety of schemes designed to empower, enhance, and represent multi-institutional and multi-disciplinary machine learning (ML) and deep learning (DL) research in healthcare paradigms. Serving as a unique compendium of existing and emerging ML/DL paradigms for the healthcare sector, this book demonstrates the depth, breadth, complexity, and diversity of this multi-disciplinary area. It provides a comprehensive overview of ML/DL algorithms and explores the related use cases in enterprises such as computer-aided medical diagnostics, drug discovery and development, medical imaging, automation, robotic surgery, electronic smart records creation, outbreak prediction, medical image analysis, and radiation treatments.

This book aims to endow different communities with the innovative advances in theory, analytical results, case studies, numerical simulation, modeling, and computational structuring in the field of ML/DL models for healthcare applications. It will reveal different dimensions of ML/DL applications and will illustrate their use in the solution of assorted real-world biomedical and healthcare problems.

Features:








Covers the fundamentals of ML and DL in the context of healthcare applications



Discusses various data collection approaches from various sources and how to use them in ML/DL models



Integrates several aspects of AI-based computational intelligence such as ML and DL from diversified perspectives which describe recent research trends and advanced topics in the field



Explores the current and future impacts of pandemics and risk mitigation in healthcare with advanced analytics



Emphasizes feature selection as an important step in any accurate model simulation where ML/DL methods are used to help train the system and extract the positive solution implicitly



This book is a valuable source of information for researchers, scientists, healthcare professionals, programmers, and graduate-level students interested in understanding the applications of ML/DL in healthcare scenarios.

Dr. Om Prakash Jena is an Assistant Professor in the Department of Computer Science, Ravenshaw University, Cuttack, Odisha, India.

Dr. Bharat Bhushan is an Assistant Professor of Department of Computer Science and Engineering (CSE) at the School of Engineering and Technology, Sharda University, Greater Noida, India.

Dr. Utku Kose is an Associate Professor in Suleyman Demirel University, Turkey.

Om Prakash Jena is an Assistant Professor in the Department of Computer Science, Ravenshaw University, Cuttack, Odisha, India. Dr. Bharat Bhushan is an Assistant Professor of Department of Computer Science and Engineering (CSE) at School of Engineering and Technology, Sharda University, Greater Noida, India. Dr. Utku Kose is an Associate Professor in Suleyman Demirel University, Turkey.

Chapter 1 Common Data Interface for Sustainable Healthcare System

C. B. Abhilash, K. T. Deepak, Rajendra Hegadi, and Kavi Mahesh

Chapter 2 Brain–Computer Interface: Review, Applications and Challenges

Prashant Sengar and Shawli Bardhan

Chapter 3 Three-Dimensional Reconstruction and Digital Printing of Medical Objects in Purview of Clinical Applications

Sushitha Susan Joseph and Aju D

Chapter 4 Medical Text and Image Processing: Applications, Methods, Issues, and Challenges

Behzad Soleimani Neysiani and Hassan Homayoun

Chapter 5 Usage of ML Techniques for ASD Detection: A Comparative Analysis of Various Classifiers

Ashima Sindhu Mohanty, Priyadarsan Parida, and Krishna Chandra Patra

Chapter 6 A Framework for Selection of Machine Learning Algorithms Based on Performance Metrices and Akaike Information Criteria in Healthcare, Telecommunication, and Marketing Sector

A. K. Hamisu and K. Jasleen

Chapter 7 Hybrid Marine Predator Algorithm with Simulated Annealing for Feature Selection

Utkarsh Mahadeo Khaire, R. Dhanalakshmi, and K. Balakrishnan

Chapter 8 Survey of Deep Learning Methods in Image Recognition and Analysis of Intrauterine Residues

Bhawna Swarnkar, Nilay Khare, and Manasi Gyanchandani

Chapter 9 A Comprehensive Survey on Breast Cancer Thermography Classification Using Deep Neural Network

Amira Hassan Abed, Essam M Shaaban, Om Prakash Jena, and Ahmed A. Elngar

Chapter 10 Deep Learning Frameworks for Prediction, Classification and Diagnosis of Alzheimer’s Disease

Nitin Singh Rajput, Mithun Singh Rajput, and Purnima Dey Sarkar

Chapter 11 Machine Learning Algorithms and COVID-19: A Step for Predicting Future Pandemics with a Systematic Overview

Madhumita Pal, Ruchi Tiwari, Kuldeep Dhama, Smita Parija, Om Prakash Jena, and Ranjan K. Mohapatra

Chapter 12 TRNetCoV: Transferred Learning-based ResNet Model for COVID-19 Detection Using Chest X-ray Images

G. V. Eswara Rao and B. Rajitha

Chapter 13 The Influence of COVID-19 on Air Pollution and Human Health

L. Bouhachlaf, J. Mabrouki, and S. El Hajjaji

Chapter 14 Smart COVID-19 GeoStrategies using Spatial Network Voronoï Diagrams

A. Mabrouk and A. Boulmakoul

Chapter 15 Healthcare Providers Recommender System Based on Collaborative Filtering Techniques

Abdelaaziz Hessane, Ahmed El Youssefi, Yousef Farhaoui, Badraddine Aghoutane, Noureddine Ait Ali, and Ayasha Malik

Erscheinungsdatum
Reihe/Serie Biomedical and Robotics Healthcare
Zusatzinfo 41 Tables, black and white; 36 Line drawings, black and white; 54 Halftones, black and white; 90 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 539 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Medizin / Pharmazie Gesundheitswesen
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 1-032-12764-3 / 1032127643
ISBN-13 978-1-032-12764-4 / 9781032127644
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99