Cardiac Mapping -

Cardiac Mapping (eBook)

eBook Download: PDF
2012 | 4. Auflage
968 Seiten
Wiley-Blackwell (Verlag)
978-1-118-48160-8 (ISBN)
Systemvoraussetzungen
247,50 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Cardiac Mapping is the cardiac electrophysiologist's GPS. It will guide you to new places in the heart and help you find the old places more easily...a valuable addition to your bookshelf

Douglas P. Zipes, from the Foreword.

Over the course of three previous editions, this book has become the acknowledged gold standard reference on the electro-anatomical mapping of the heart. This new edition features greatly expanded coverage-the number of chapters have doubled to 80 with 40 new chapters-on leading edge science, new clinical applications and future frontiers, authored by a who's-who of global electrophysiology.

This unique text offers truly comprehensive coverage of all areas of cardiac mapping, from core scientific principals to methodological and technical considerations to the latest data that you can put to work caring for patients. In addition, the all new 4th edition adds essential content on:

  • Mapping in experimental models of arrhythmias
  • Mapping supraventricular and ventricular tachyarrhythmias
  • New catheter-based techniques
  • Also featuring a companion website with video clips illustrating essential techniques described in the text

The only state-of-the-art, stand-alone text on this dynamic subject, Cardiac Mapping is an essential resource for basic scientists, clinical electrophysiologists, cardiologists and all physicians who care for patients with cardiac arrhythmias.



Mohammad Shenasa MD Attending Physician Department of Cardiovascular Services O'Connor Hospital; San Jose, California

Gerhard Hindricks MD Professor of Medicine (Cardiology) University Leipzig, Heart Center; Director, Department of Electrophysiology Leipzig, Germany

Martin Borggrefe MD Professor of Medicine (Cardiology) Head, Department of Cardiology, Angiology and Pneumology Klinikum Mannheim GmbH Universitätsklinikum Fakultät fur Klinische Medizin Mannheim der Universitat Heidelberg Mannheim, Germany

Günter Breithardt, MD Professor of Medicine (Cardiology), Head, Department of Cardiology and Angiology, Hospital of the University of Münster, D-48129 Münster, Germany

Mark E. Josephson, MD Herman C. Dana Professor of Medicine Harvard Medical School Chief of Cardiovascular Division Beth Israel Deacomess Medical Center

Cardiac Mapping 3
Contents 7
List of Contributors 11
Preface to the Fourth Edition 17
Preface to the First Edition 18
Foreword 19
European Perspective 21
Acknowledgements 22
PART I Methodological and Technical Considerations 23
CHAPTER 1 Evolution of Cardiac Mapping: From Direct Analog to Digital Multi-dimensional Recording 25
Introduction 25
Indirect recordings of the electrical activity from the heart 26
Direct recordings of the electrical activity from the heart 27
Multi-channel mapping systems 27
Multi-terminal electrodes 28
Catheter-based multi-electrodes 28
Unipolar versus bipolar recordings 29
The Laplacian recording mode 29
Information extracted from extracellular electrograms 30
Signal morphology: mono- and biphasic, double potentials, fractionation 30
Activation maps 31
Potential mapping 31
Activation recovery interval 31
Three-dimensional patterns 31
Integrative approaches 32
Alternative mapping techniques 32
References 32
CHAPTER 2 Image Acquisition and Processing in New Technologies 34
Introduction 34
History of 3D mapping systems and image integration 34
Potential benefits of 3D mapping 35
Principles of 3D mapping systems 35
Impedance mapping systems 35
Comparison of magnetic and impedance-based systems 36
Non-contact mapping 36
Hybrid systems 36
Intracardiac echocardiography 37
Fluoroscopic integration 37
Magnetic resonance imaging integration 38
Dynamic maps 39
Optical coherence tomography 39
Future directions 39
References 39
CHAPTER 3 Microelectrode Arrays in Cardiac Mapping 40
Microelectrode arrays 40
Passive metal arrays 40
Complementary metal oxide semiconductor electrode-based mapping 42
Mapping techniques 43
In vivo 43
In vitro 44
Embryonic stem cell-derived cardiomyocytes 46
Induced pluripotent stem cell-derived cardiomyocytes 47
Patient specific induced pluripotent stem cell-derived cardiomyocytes 48
Acknowledgements 48
References 48
CHAPTER 4 Cardiac Morphology Relevant to Mapping 50
Introduction 50
General overview: location and spatial relationships of chambers 50
The chambers of the heart 51
The right atrium 51
The atrial septum and interatrial connections 53
The left atrium 53
The right ventricle 54
The left ventricle 55
References 56
CHAPTER 5 Comparison of Mapping Technologies for Cardiac Electrophysiology 58
Introduction 58
The EnSite NavX system 58
The CARTO system 60
Image integration with CARTO and NavX 60
Mapping of complex fractionated electrograms for AF 62
Other mapping systems 62
Non-contact mapping 64
Comparison of CARTO and NavX 66
References 66
CHAPTER 6 Interpretation of Electrograms and Complex Maps of Different Mapping Technologies 68
Introduction 68
Complex local electrogram 69
Far-field potential 70
Passively activated chamber 70
Identification of the scar 72
Mechanical premature ventricular contractions 72
Small potential at the earliest activation site 73
References 74
CHAPTER 7 Cardiac Mapping: Approach and Troubleshooting for the Electrophysiologist 75
Introduction 75
General principles 76
Determining type of arrhythmia and correct chamber 76
Mapping windows 76
Correct contact 76
Interpreting the colors 77
Choice of reference signal 77
Taking points: activation mapping 78
Normal tissue 78
Taking points: substrate mapping 80
Mapping systems 81
Troubleshooting 81
Missing activation: scar and hidden anatomy 81
Mapping density 83
Early versus late: distance, loops and alleys 83
Reentry or focal? 86
Masquerading scar 88
References 89
PART II Mapping in Experimental Models of Cardiac Arrhythmias 91
CHAPTER 8 Optical Mapping: Its Impact on Understanding Arrhythmia Mechanisms 93
Rescuing the diseased heart 93
Arrhythmias in a dish 93
Cell therapy can prevent post-infarct arrhythmias 95
Mapping the human heart 96
References 100
CHAPTER 9 Optical Mapping of the Sinoatrial Node and Atrioventricular Node 101
Optical mapping methodology 101
Sample preparation 101
Optical mapping setup 102
Optical mapping of the SA node 102
Background 102
SAN anatomy 102
SAN electrophysiology 102
Interpretation of optical action potentials from the SAN 103
Optical mapping of the canine SAN 103
Optical mapping of the human SAN 105
Optical mapping of the AVN 106
Background 106
AVN anatomy 106
AVN immunohistochemistry 106
AVN electrophysiology 106
Interpretation of optical action potentials from the AVN 107
Optical mapping of the rabbit AVN 107
Optical mapping of the human AVN 108
References 110
CHAPTER 10 Panoramic Optical Imaging of Cardiac Arrhythmias 112
Introduction 112
Panoramic imaging techniques 112
Panoramic imaging system 113
Geometric heart surface reconstruction 113
Texture mapping of fluorescence 114
Panoramic data analysis techniques 114
Conduction velocity 116
Physiological insights from panoramic optical mapping 116
Mechanisms of ventricular tachycardia/ventricular fibrillation 116
Mechanisms of defibrillation 116
Informing and validating computational models 117
Complementary mapping techniques 117
References 119
CHAPTER 11 Optical Imaging of Arrhythmias in Cardiomyocyte Monolayer Culture 120
Introduction 120
Imaging electrical activity in the monolayer 121
Macroscopic optical mapping 121
Microscopic optical mapping 122
Cardiac arrhythmias in the monolayer 123
Cardiac myocyte–myofibroblast electronic coupling and arrhythmogenesis 123
The role of heterogeneity and intercellular coupling in wave propagation in the monolayer 125
Studies of ischemia/reperfusion related arrhythmias in the monolayer 126
Concordant/discordant alternans and arrythmogenesis in the monolayer 127
References 128
CHAPTER 12 Mapping of Rotors in Atrial Fibrillation: From Animal Models to Humans 130
Introduction 130
Reentrant activity during acute AF in the isolated sheep heart 131
Formation of reentrant activity 132
Increased intra-atrial pressure and rotor dynamics 134
Activation frequency and rotor drivers in humans 135
Acknowledgements 139
References 139
CHAPTER 13 Multiple Mechanisms Causing Ventricular Tachycardia 141
Classification of arrhythmogenic mechanisms 141
Automaticity 141
Normal automaticity 141
Clinical electrophysiology 142
Abnormal automaticity 143
Triggered activity 144
DADs and triggered activity 144
Arrhythmogenic substrate in structural heart disease 148
Gap junction remodeling 149
Reentrant ventricular tachycardia in structural heart disease 149
Arrhythmogenic right ventricular cardiomyopathies 150
Hypertrophic cardiomyopathy 150
Heart failure 150
References 151
CHAPTER 14 Modeling of Atrial Fibrillation 153
Introduction 153
Modeling of AF 154
Integrative approach: from the single cell to the whole atrium 154
Initiation, perpetuation and termination of AF 154
Modeling different types of AF 155
Computer modeling as a tool to develop new therapeutical strategies for AF 156
Antiarrhythmic drugs 158
Catheter or surgical ablation 158
Pacing of AF 159
Link to clinical data and patient-specific modeling 159
Acknowledgements 161
References 161
CHAPTER 15 Modeling of Ventricular Arrhythmias 162
Introduction 162
General approach to ventricular arrhythmia modeling 162
Models of ventricular arrhythmias 164
Models of ventricular arrhythmia mechanisms in the normal heart 164
Models of arrhythmias in the diseased heart 165
Simulation of drug-induced ventricular arrhythmias 166
Ventricular models of arrhythmia incorporating non-myocytes 166
Ventricular models of arrhythmia incorporating the Purkinje system 169
Challenges and future directions of ventricular arrhythmias modeling 169
Acknowledgements 170
References 170
CHAPTER 16 Personalized Electrophysiological Modeling of the Human Atrium 172
Introduction 172
Basics of anatomy and electrophysiology relevant to atrial modeling 173
Anatomical features 173
Electrophysiology 173
Data acquisition 174
Imaging of the atria 174
Catheter measurement of atrial electrical signals 174
ECG and BSPM 174
Personalized anatomical atrial models 174
Image segmentation 174
Existing geometrical models 175
Structural information 175
Validation of anatomical models 175
Personalized electrophysiological atrial models 176
Existing electrophysiological models 176
Integration of measurement data 176
Validation of atrial electrophysiology 177
Personalization of excitation conduction and ECG in atrial models 177
Existing models of atrial excitation 177
Patient-specific excitation conduction 177
Patient-specific ECG 178
Validation of atrial conduction 178
Perspectives 178
References 179
CHAPTER 17 Mapping of the Atrial Neural Network: Autonomic Mechanisms Underlying Complex Fractionated Atrial Electrograms and the Substrate for Atrial Fibrillation 181
Background 181
Definitions of CFAEs 182
Non-contact mapping systems 182
Other lines of evidence linking autonomic mechanisms underlying CFAEs 184
The cardio–cardiac reflex and CFAEs 187
Clinical implications 191
Acknowledgements 192
References 192
CHAPTER 18 Mapping of Atrial Repolarization Changes and Tachyarrhythmia Sites of Origin During Activation of Mediastinal Nerve Inputs to the Intrinsic Cardiac Nervous System 194
The clinical issue 194
Limitations of functional electrophysiological mapping based on the extrastimulus technique 195
Functional electrophysiological mapping of repolarization changes 195
Neurally induced atrial tachyarrhythmias: spatially concordant repolarization changes 195
Functional versus anatomical mapping of ganglionated plexus and juxtacardiac nerves 197
Interplay with myocardial tissue and cellular properties 199
Acknowledgements 199
References 199
CHAPTER 19 How to Map Autonomic Activity 201
Introduction 201
Anatomy of cardiac autonomic nervous system 202
Mapping techniques 203
Data analysis 203
Extrinsic cardiac nervous activity – sympathetic and parasympathetic nerve activities 203
Intrinsic cardiac nervous activity 204
Modulation of cardiac autonomic nervous activity 206
Acknowledgements 208
References 208
PART III Mapping of Supraventricular Tachyarrhythmias 211
CHAPTER 20 Mapping of Human Atrial Flutter and Its Variants 213
Introduction 213
AFL terminology 213
Pathophysiological mechanisms of typical (and reverse typical) AFL 214
Electrocardiogram diagnosis of typical (and reverse typical) AFL 215
Standard catheter mapping of typical (and reverse typical) AFL 215
Radio-frequency catheter ablation of typical AFL 217
Procedure endpoints for RFCA of typical AFL 220
Outcomes and complications of catheter ablation of typical AFL 223
Alternative energy sources for ablation of typical AFL 224
Computerized 3D mapping in diagnosis and ablation of AFL 224
Simplified approach to ablation of typical (and reverse typical) AFL 227
Mapping and diagnosis of atypical right AFL 228
References 232
CHAPTER 21 New Insights into Reentry Circuits from Mapping and Ablation of Atrioventricular Nodal Reentrant Tachycardia 235
Introduction 235
Conducting tissue of the atrioventricular junction 235
Functional inputs to the AV node 235
The slow pathway 236
The fast pathway 237
The AVNRT reentry circuit 238
Catheter ablation of AVNRT 238
Endpoints for slow pathway ablation 238
Typical AVNRT variants 240
Non-inducible AVNRT 241
Risk of AV block 241
Ablation of AVNRT in the presence of preexisting AV nodal conduction abnormalities 241
Catheter ablation of atypical AVNRT 241
References 244
CHAPTER 22 Atrioventricular Nodal Reentrant Tachycardia: Current Understanding and Controversies 246
Introduction 246
AV node with its neighboring atrium 246
EP characteristics of the AVNRT circuit 247
Different forms of AVNRT 247
Typical AVNRT 247
Atypical AVNRT 250
Differential diagnosis 250
Blocks and “pseudo-blocks” during AVNRT 255
AV discordance with A V 255
AV discordance with V A 256
Extent of the AVNRT circuit 260
Upper turnaround point 260
Lower turnaround point 263
Transcatheter ablation 265
Approaches to slow pathway ablation 265
Practical tips for achieving successful results with RFA 266
Cryomapping and cryoablation 268
Potential complications 268
Cryomapping of the fast pathway 268
Clinical and EP outcomes after ablation 269
Acknowledgements 269
References 269
CHAPTER 23 Mapping of Typical Preexcitation Syndromes 271
Introduction 271
Epidemiology and prognosis 271
AP characteristics 271
ECG localization of AP 272
Electrophysiology study 272
Baseline measurements 272
Para-Hisian and pure Hisian pacing 273
Differential (base vs. apex) pacing 273
Diagnostic maneuvers during tachycardia 274
ORT tachycardia characteristics 274
Preexcitation index 274
His-synchronous ventricular extrastimuli (HSVE) 275
Ventricular overdrive pacing and entrainment 275
Pacing at the tachycardia cycle length 276
Mapping strategies 276
Mapping the earliest ventricular signal 277
Mapping the earliest atrial signal 277
Short local VA/AV time 278
AP potentials 278
Slanted pathways 278
Approach 279
Retrograde aortic approach 279
Transeptal approach 280
Coronary sinus ablation 280
Special anatomic considerations 281
Posteroseptal accessory pathways 281
Free wall accessory pathways 282
References 282
CHAPTER 24 Cardiac Mapping in Variants of the Ventricular Preexcitation Syndrome 284
Introduction: the Mahaim fiber in the new millennium (Figure 24.1) 284
Atriofascicular pathways and decrementally conducting long AV pathways 286
Short decrementally conducting accessory AV pathways (short AV Mahaim fibers) 296
Definitions 296
Pre-ablation ECG findings 298
Electrophysiological findings 299
Common features in patients with short AV Mahaim fibers 301
Discordant features in patients with short AV Mahaim fibers 302
AV node-like features 302
Short AV Mahaim fibers without AV node-like behavior 303
Previous studies 303
Do all short AV Mahaim fibers need to undergo catheter ablation therapy? 303
Mapping and ablating short AV Mahaim fibers 304
Fasciculoventricular fibers 304
Introduction 304
Electrocardiographic recognition of a fasciculoventricular pathway and its differentiation from midseptal and anteroseptal accessory pathways 305
Electrocardiographic similarities with anteroseptal accessory pathways 305
Electrocardiographic similarities with midseptal accessory pathways 306
Electrocardiographic dissimilarities between fasciculoventricular pathways, midseptal and anteroseptal accessory pathways (Table 24.4) 306
Electrophysiological findings of fasciculoventricular pathways 307
Relationship between fasciculoventricular pathway and PRKAG2 mutation 307
Nodoventricular and nodofascicular pathways 314
Electrophysiology 314
Proof of the participation of the nodofascicular/ nodoventricular fiber in the tachycardia circuit 315
Definition of the Mahaim fiber insertion sites 315
Retrograde VH conduction 316
Differential diagnosis 316
Radio-frequency catheter ablation 317
References 318
CHAPTER 25 Three-Dimensional Post-Pacing Interval Mapping of Left Atrial Tachycardia 321
Introduction 321
Role of imaging 321
Mapping modalities 322
Role of 3D mapping systems 322
Activation mapping 322
Voltage mapping 322
PPI mapping 322
Catheter ablation strategies 324
Success rates 325
Procedural complications 325
Limitations 326
References 327
CHAPTER 26 Recent Observations in Mapping of Complex Fractionated Atrial Electrograms in Atrial Fibrillation 328
Introduction 328
Definition of CFAEs 329
Electrophysiological mechanisms underlying CFAEs 329
Regional distribution of CFAEs 329
CFAE mapping 331
Procedural details 332
Evidence that CFAE areas represent AF substrates 335
Other studies and controversy 335
Studies in paroxysmal AF patients: is CFAE targeting ablation alone appropriate for treating these patients? 335
Studies in persistent AF: role of targeting CFAEs alone or as an adjuvant to PVI or linear ablation 336
References 337
CHAPTER 27 Monophasic Action Potential Recordings in Atrial Fibrillation and Role of Repolarization Alternans 339
Epidemiology of atrial fibrillation 339
Mechanisms of AF 339
MAP recording 339
Action potential duration and restitution 341
Substrate for arrhythmia 341
Atrial electrophysiological properties and atrial fibrillation 342
References 347
CHAPTER 28 Mapping of the Atrial Electrogram in Sinus Rhythm and Different Atrial Fibrillation Substrates 350
Introduction 350
Mapping procedure and technical consideration 350
Electroanatomic mapping 351
Bipolar intracardiac electrogram analysis 351
Non-contact mapping for sinus rhythm 351
Clinical implication of electrogram voltage 353
Indicator of degree of atrial substrate remodeling 353
Indicator of sinus node dysfunction 354
Implication for intracardiac mapping: identification of the disease substrate or scar 354
Implication for intracardiac mapping: identification of the conduction block and conduction isthmuses 355
Spectral analysis during sinus rhythm: AF nest identification 357
Clinical implications 357
Mechanism of the AF nest 358
References 360
CHAPTER 29 Management of Atrial Tachycardias Arising in the Context of Atrial Fibrillation Ablation 363
Introduction 363
Burden of AT after AF ablation 363
Classification 364
Mechanisms of AT 364
Drug therapy 364
ATs occurring during AF ablation 364
Locations of AT circuits 364
Diagnosis 365
Clinical diagnosis 365
Electrophysiological diagnosis 366
Three-dimensional mapping tools 368
Catheter ablation 369
Procedural outcome and prognosis 370
Prevention of AT 371
References 371
CHAPTER 30 Stepwise Approach to Management of Atrial Arrhythmias after Catheter Ablation of Atrial Fibrillation 373
Incidence and importance of the problem 373
Mechanisms of the recurrent ATs after AF ablation 373
Classification of the ATs after AF ablation 374
ECG recognition of ATs secondary to prior AF ablation 374
Preferential localization of ATs after left atrial substrate modification 374
Stepwise approach in left AT diagnosis and ablation 375
Pulmonary vein re-isolation 375
Entrainment maneuvers and 3D-entrainment mapping 375
Activation mapping 376
Procedural endpoint 376
Outcome of the re-ablation procedures 377
References 378
CHAPTER 31 Mapping of Persistent Atrial Fibrillation: How Many Sites, How Many Lines? 380
Introduction 380
Ablation strategies 380
Pulmonary vein antrum isolation (PVAI) (Figure 31.1) 380
Complex fragmented atrial electrograms (Figure 31.2) 381
Linear ablation 382
Non-PV foci 383
Other/new strategies 383
Endpoints for ablation in persistent AF 383
Outcomes 384
References 385
CHAPTER 32 Mapping of Focal Right Atrial and Coronary Sinus Tachycardias 389
Introduction 389
Pathophysiology 389
Electrocardiographic characteristics 390
Electrophysiological characteristics 392
Electroanatomical mapping 394
AT arising from CS musculature 396
Ablation 397
References 399
CHAPTER 33 Is There a Role For Mapping of Dominant Frequency in Human Atrial Fibrillation? 402
Introduction 402
Clinical studies on CFAE mapping 402
Mechanisms of CFAEs 406
Frequency mapping 407
Future directions 410
References 410
CHAPTER 34 Do Mapping Strategies Influence the Outcome in AF Ablation? 413
Introduction 413
Techniques and outcomes 413
Role of PVs: from early experiences to PV antral approach 413
Role of atrial substrate modification 415
Outcome in complex and multistep approaches 418
Results from worldwide surveys 419
References 419
CHAPTER 35 Mapping of Atrial Fibrillation: Comparing Complex Fractionated Atrial Electrograms, Voltage Maps, Dominant Frequency Maps and Ganglionic Plexi 422
Introduction 422
Complex fractionated atrial electrograms 422
Voltage maps 424
Dominant frequency maps 426
Ganglionic plexi 427
References 430
CHAPTER 36 Mapping Strategies in Failed and Redo Ablation of Atrial Arrhythmias 432
Introduction 432
Pre-procedure planning 432
Technical considerations 433
Mapping strategy after previous PVI 433
Mapping strategy after previous stepwise ablation for persistent AF 434
References 438
CHAPTER 37 The Use of Multi-electrode Catheters for Electroanatomical Mapping of Atrial Fibrillation 440
Introduction 440
Types of multi-electrode catheters 440
The circular mapping catheter 440
The multi-spine catheter 441
The spiral mapping catheter 441
Anatomy acquisition 441
Electrical data acquisition 442
Activation mapping of focal and reentrant tachycardias 442
Rapid detection of gaps along ablation lines 442
Mapping of complex fractionated electrograms 442
Activation mapping of AF 443
Limitations of micro-electrode catheters 443
References 443
PART IV Mapping of Ventricular Tachyarrhythmias 445
CHAPTER 38 Mapping of VT in Structurally Normal Hearts 447
Idiopathic ventricular tachycardia 447
Ventricular outflow tachycardias 447
Anatomy and relationship between LVOT and RVOT 448
RVOT tachycardia: ECG characteristics 448
LVOT tachycardia: anatomic origins and ECG characteristics 450
Mapping and ablation of outflow tract VT 452
Verapamil sensitive VT 453
Electrocardiography 453
Anatomical basis, substrate and mechanism 455
Characteristics and electrophysiological study 455
Medication 455
Ablation 456
Triggered epicardial left VT 457
Papillary muscle ventricular tachycardia 457
Mitral annular VT 457
References 459
CHAPTER 39 Advances in Mapping and Catheter Ablation of Ventricular Arrhythmias in Ischemic and Scar-related Substrates 461
Introduction 461
Activation mapping 462
Entrainment techniques 462
Pacemapping 462
Substrate mapping 463
Scar distribution 463
Use of voltage mapping 464
Other information 464
Inexcitable areas 464
Pre-procedure studies including imaging 466
Recognition of non-traditional sites for VT mapping and ablation 467
Hemodynamic support 468
Current approaches 469
Endpoints and outcomes 469
Remaining problems 470
References 471
CHAPTER 40 Mapping of Ventricular Tachycardias in Rare Cardiomyopathies 472
Introduction 472
Sarcoidosis: general pathology and diagnosis 473
Amyloidosis – general pathology and diagnosis 473
Ventricular tachyarrhythmias in cardiac sarcoidosis 475
Steroid therapy in cardiac sarcoidosis 475
Ventricular tachyarrhythmias in cardiac amyloidosis 476
Data on mapping and catheter ablation 476
References 478
CHAPTER 41 Advances in Mapping of Ventricular Fibrillation and Defibrillation: Role of the Purkinje System 481
Anatomy of the Purkinje network 481
Recording Purkinje activation in humans 482
Mechanisms of Purkinje fiber activation during VT 482
Purkinje fiber involvement in VF 482
Purkinje involvement in post-shock arrhythmias 485
Acknowledgements 487
References 487
CHAPTER 42 Phase Mapping of Cardiac Fibrillation: Applications in Studying Human Ventricular Fibrillation 489
Background 489
Electrical and optical mapping of human VF 489
Phase mapping 490
Temporal organization 490
Hilbert transform 490
Spatial organization 491
Applications in studying human VF 493
Types of reentrant circuits 493
Border zone affinity 493
Expanding phase mapping in a 3D model 493
Scroll waves 494
Effect of ischemia–reperfusion on spatial organization of VF 496
Phase mapping in clinical studies 496
Limitations 497
References 498
CHAPTER 43 Myocardial Substrate Mapping in Non-ischemic Cardiomyopathy Ventricular Tachycardia 499
Introduction 499
Initial assessment of VT in the electrophysiology laboratory 500
Substrate mapping 500
Endocardial voltage mapping 500
Pace mapping 500
Sinus or paced rhythm electrograms 501
Epicardial or intramural substrate 502
Endocardial voltage mapping to detect epicardial scars 502
Epicardial substrate mapping 502
Avoiding injury to coronary arteries and the phrenic nerve 503
Application of substrate-guided ablation for VT in NICM 503
References 504
CHAPTER 44 Epicardial Mapping: Technique, Indication and Results 506
Introduction 506
When to consider an epicardial approach 506
Method for pericardial access 508
Techniques for epicardial mapping and ablation 510
Complications and risks associated with epicardial ablation 511
Outcome of epicardial mapping and ablation in specific arrhythmogenic substrates 513
Idiopathic VT 513
Non-ischemic cardiomyopathy 514
Ischemic heart disease 517
References 518
CHAPTER 45 Combined Endocardial and Epicardial Mapping of Ventricular Tachycardia 522
Introduction 522
General procedural considerations 522
Substrate characterization 523
Normal electrogram characteristics 523
Ischemic cardiomyopathy (ICM) 524
LV cardiomyopathy 524
RV cardiomyopathy (ARVC/D) 525
Chagas disease 526
VT morphology 527
Mapping strategies 529
Entrainment mapping 529
Pace mapping 530
Substrate modification 530
Combined LV and RV cardiomyopathy 532
References 533
CHAPTER 46 Localization of the Arrhythmogenic Substrate in Non-ischemic Cardiomyopathy: Combined Endocardial and Epicardial Mapping and Ablation 536
Introduction 536
Pathologic features of the arrhythmogenic substrate 536
Location of arrhythmogenic substrate in NICM 537
Can an epicardial substrate be predicted? 540
12-lead ECG 540
Imaging 542
Electroanatomical mapping 544
Endocardial/epicardial or both? 544
References 544
CHAPTER 47 Is Resetting and Entrainment Mapping Still Useful with New Technologies? 546
Introduction 546
Understanding the physiology of resetting and entrainment 546
Efficacy of entrainment mapping vs. activation mapping or substrate ablation 548
Importance of determining the tachycardia mechanism 548
Using entrainment to verify activation mapping information 555
Use of entrainment mapping to validate novel substrate mapping approaches 555
References 558
CHAPTER 48 Should We Map and Ablate the Triggers, Substrates, Ventricular Tachycardia Circuit or All? 559
Introduction 559
Ablating the triggers 559
Purkinje-related extrasystole 560
Ablating the substrate 560
Ablating the circuit 562
References 565
CHAPTER 49 Mapping of Ventricular Arrhythmias Originating from Aortic and Pulmonic Valves 566
Introduction 566
Anatomic correlate 566
Mechanism of arrhythmia 567
Clinical presentation and treatment options 567
12-Lead surface ECG 567
RVOT VT 568
Differentiating aortic root from RVOT VT 568
LCC VT 568
RCC VT 568
Supravalvular versus epicardial OT VT 568
Pre-procedural considerations 569
Mapping strategies 569
Activation mapping 569
Pacemapping 569
Catheter ablation 569
Ablation of VT originating from the RVOT and pulmonary artery 570
Ablation of VT arising from the aortic sinuses of Valsalva 570
Complications 571
Procedural endpoint and success rates 571
References 571
CHAPTER 50 Do Mapping Strategies Influence Outcomes in Ventricular Tachycardia Ablation? 573
Introduction 573
Entrainment mapping 573
Pacemapping 574
Non-contact mapping 575
Dynamic substrate mapping 575
Mapping during ongoing arrhythmia 575
Substrate mapping 576
LP mapping 577
References 580
PART V Future Directions and Technologies in Cardiac Mapping and Imaging of Cardiac Arrhythmias 583
CHAPTER 51 Future in Intracardiac Three-dimensional Mapping-Fluroscopy Integrated Sensor-Based Catheter Navigation: The MediGuide Technology 585
Introduction 585
Description of the technology 585
Clinical experience 587
References 587
CHAPTER 52 Role of Remote Navigation in Mapping and Ablation of Complex Arrhythmias 588
Introduction 588
Electromechanical remote navigation 588
Sensei: baseline concept 589
Amigo: baseline concept 589
Clinical experience using electromechanical systems 589
Magnetic navigation 590
NIOBE: baseline concept of permanent magnetic navigation 590
Catheter Guidance Control and Imaging system: baseline concept 590
Clinical experience: tachycardia substrates 591
Remote-controlled ablation of AF 592
Further advantages of remote navigation 592
Comparison between electromechanical and magnetic remote navigation 594
References 594
CHAPTER 53 Diffusion Tensor Magnetic Resonance Imaging-Derived Myocardial Fiber Disarray in Hypertensive Left Ventricular Hypertrophy: Visualization, Quantification and the Effect on Mechanical Function 596
Abstract 596
Introduction 596
Myocardium microarchitecture 596
Diffusion tensor magnetic resonance imaging 596
Tracking of the microstructural components of myocardium 597
Hypertension-induced left ventricular hypertrophy as an ominous sign of heart failure 598
The role of mechanical modeling in cardiology 599
Contribution of this chapter 599
Materials and methods 600
Research animal model 600
Heart preparation 600
Diffusion imaging 600
Tensor data set reconstruction 600
Visualization of the myocardial fiber disarray using DT-MRI fiber tractography 600
DT-MRI quantitative study of the myocardial fiber disarray 601
Regions of interest 601
Quantitative analysis of myocardial fiber disarray 602
Mechanical effects of myocardial fiber disarray: a model-based study 604
Discussion and future directions 605
Acknowledgements 607
References 607
CHAPTER 54 Imaging Fiber Orientation with Optical Coherence Tomography and Diffusion-Tensor Magnetic Resonance Imaging and its Role in Arrhythmogenesis 611
Fiber orientation in the mammalian ventricle 611
Normal ventricular fiber orientation 611
The impact of fiber orientation on normal electrophysiological function 611
Measuring ventricular fiber orientation 612
Imaging of fiber orientation with OCT 612
Principles of OCT 612
Imaging of fiber orientation in cardiac tissues with OCT 613
Future developments in cardiac OCT 614
Imaging of fiber orientation with DT-MRI 615
Principles of DT-MRI 615
Imaging of fiber orientation in cardiac tissues with DT-MRI 615
Informing computational models of electrophysiology 615
Future developments in cardiac DT-MRI 615
The role of fiber orientation in arrhythmogenesis 616
Anisotropic conduction failure and reentry 616
Modeling how changes in fiber orientation effect wavefront propagation 617
Transmural fiber rotation and arrhythmogenesis in hypertrophic cardiomyopathy 617
Using geometry to tailor antiarrhythmic therapies 618
References 618
CHAPTER 55 Novel Imaging Strategies for Cardiac Arrhythmias 620
Introduction 620
Imaging in AF 620
Left atrial volume and function 620
Left atrial function 621
Imaging of left atrial scar 622
Intraprocedural echo-guided cardiac imaging 622
Image integration 624
Fluoroscopy and CT/MRI 624
Image integration: mapping system 625
Results of imaging integration in terms of clinical outcomes 625
Remote navigation systems 625
Rotational angiography 627
Advances in imaging for VT 628
Molecular imaging 628
Scar imaging 630
Non-invasive imaging of cardiac electrophysiology 631
References 631
CHAPTER 56 Role of Magnetic Resonance Imaging in Mapping the Architecture of the Arrhythmia Substrate in Patients with Ischemic and Non-ischemic Cardiomyopathy 634
Introduction 634
Delayed enhancement (DE) 634
MRI technology 634
Quantification of DE 635
Limitations of DE-MRI 635
Electroanatomical mapping 636
MRI and electroanatomical mapping 636
MRI and arrhythmogenic right ventricular dysplasia 636
MRI and hypertrophic cardiomyopathy 636
MRI and other forms of non-ischemic cardiomyopathy 637
MRI and prior myocardial infarction 639
References 640
CHAPTER 57 New Image Integration Technologies for Optimization of Cardiac Resynchronization Therapy 642
Introduction 642
Imaging methodologies for assessment of LV dyssynchrony 643
Echocardiography 643
Magnetic resonance imaging and cardiac computed tomography 643
Nuclear imaging techniques 643
Novel imaging techniques 643
Imaging methodologies for assessment of scar 643
Imaging methodologies for assessment of coronary sinus anatomy 644
Image integration approaches 644
Future directions 644
Disclosures 647
References 647
CHAPTER 58 Role of Mapping and Imaging in Brugada Syndrome 649
Introduction 649
Mapping and imaging of the electrophysiological substrate 649
Heterogeneity of ventricular repolarization 650
RV conduction abnormality 651
Catheter mapping and ablation of the arrhythmogenic substrate 657
Mapping and ablation of focal RVOT triggers 657
Mapping and ablation of the RVOT substrate 660
Acknowledgement 662
References 662
CHAPTER 59 Role of Mapping and Ablation in Genetic Diseases: Long QT Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia 666
Introduction 666
Mapping and ablation of channelopathies: challenges and opportunities 666
Long QT syndrome (LQTS) 667
Catecholaminergic polymorphic ventricular tachycardia (CPVT) 669
References 674
CHAPTER 60 Role of Late Gadolinium-Enhanced Magnetic Resonance Imaging in Detection and Quantification of Atrial Fibrosis 678
Introduction 678
Classification of AF 678
Consensus scheme and individualized model 678
Classification scheme based upon atrial tissue remodeling: the Utah model 679
Image acquisition and processing 681
Correlation between late gadolinium enhancement and contact voltage mapping 681
Left atrial structural remodeling to guide ablation of AF 681
Patient counseling and selection for ablation of AF 681
Use of LGE-MRI to visualize ablation 682
Pulmonary vein isolation and assessment of recurrent AF 683
References 684
CHAPTER 61 Hypertrophic Cardiomyopathy: Risk Stratification and Management of Arrhythmia 686
Introduction 686
Causes of HCM 686
Pathophysiology 688
Mechanisms of ventricular arrhythmia in HCM 688
Mechanisms of syncope in HCM 689
Risk stratification for sudden death in HCM 690
History 691
Electrocardiogram 692
Echocardiogram 692
24-hour ECG monitoring 692
Blood pressure response on exercise testing 693
Newer strategies for risk stratification 693
Role of cardiac mapping and imaging in risk stratification and management of arrhythmias 694
Prevention of sudden death 695
Future risk stratification strategies 696
Electrophysiological aspects of management of hypertrophic cardiomyopathy patients 696
Arrhythmias: SVT and AF 696
ICD implantation and defibrillation threshold testing 697
Sources of funding 697
References 697
CHAPTER 62 Role of Magnetic Resonance Imaging in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy 700
Introduction 700
MRI in ARVD/C 700
MRI protocol 701
MRI findings in ARVD/C 701
Morphologic abnormalities 701
MRI fibrosis in ARVD/C 703
LV involvement in ARVD/C 704
MR assessment of cardiac function in ARVD/C 704
Functional abnormalities in ARVD/C 704
Global RV dilation/dysfunction 704
Regional dysfunction 704
Genotype–phenotype correlation 705
References 706
CHAPTER 63 Role of Cardiac Computed Tomography Imaging to Guide Catheter Ablation of Arrhythmias in Complex Cardiac Morphologies 708
Introduction 708
CT demonstration of intra-atrial anatomical landmarks relevant to catheter-based ablation 709
Atrial anatomy 709
Assessment of the conduction system 709
Crista terminalis 709
Cavotricuspid isthmus 710
Characterization of the interatrial septum 711
CT analysis of the PVs 711
Left atrial isthmus and AF 714
CT demonstration of the anterior interatrial muscle bundle 714
Posterior interatrial muscle connections through the CS 714
Anatomic barriers in transvenous interventions 714
Extracardiac sources 714
Trans-septal interventions 714
Intra-atrial obstacles 716
CT demonstration of extracardiac anatomical landmarks relevant to catheter-based ablation 717
Esophagus 717
Descending aorta 719
Phrenic nerve injury 719
Sympathetic plexus 719
Assessment of coronary arteries with CT 720
CT demonstration of anatomical variants and incidentally found congenital anomalies 720
Accessory LAA 720
Cor triatriatum sinister 720
S-shaped SAN artery 720
Large Thebesian (atrial) veins 720
Anomalous venous returns 720
CT demonstration of pathologies 720
Assessment of LAA thrombus 720
Myocardial scar tissue localization, potential use of CT in ventricular tachycardia 721
Gross myocardial fat and ARVD 723
Epicardial lipomatosis and conduction system 723
References 723
CHAPTER 64 Multi-modality and Multi-dimensional Mapping: How Far Do We Need To Go? 727
Introduction 727
Challenges and limitations of electroanatomical mapping systems 727
Movement of the patient or the reference electrode 728
Multi-modality: image integration 729
Intracardiac echocardiography 729
Cardiac tomography 729
Magnetic resonance imaging 729
Epicardial ablation 731
Non-fluoroscopic sensor-guided navigation 731
Positron emission tomography 731
References 732
CHAPTER 65 Advances in Non-invasive Electrocardiographic Imaging: Examples of Atrial Arrhythmias 734
Introduction 734
ECGI methodology 734
Normal atrial activation and repolarization 735
Typical atrial flutter 736
Atypical atrial flutter associated with a scar 736
Focal atrial tachycardia 738
Atrial fibrillation (AF) 740
Example of real-time interactive ECGI application during PV isolation procedure 741
Sources of funding 742
Disclosure 742
References 743
CHAPTER 66 ST Segment Mapping in Ventricular Tachycardia 744
Introduction 744
ST segment alternans mapping 744
Electrocardiographic imaging 745
3D cardiac electrical imaging 746
References 746
CHAPTER 67 Microvolt T-wave Alternans 748
Introduction 748
Mechanisms underlying T-wave alternans 748
Methods and technical aspects of TWA assessment 749
Interpretation of MTWA recordings 749
Clinical implications of TWA 750
MTWA and invasive electrophysiological testing 750
MTWA and risk stratification 750
MTWA and guidance of ICD implantation 750
Risk stratification in patients with preserved ejection fraction 751
Guiding medical therapy 751
References 751
CHAPTER 68 Electrophysiological Implications of Myocardial Cell and Gene Therapy Strategies 754
Introduction 754
Cell therapy for infarct repair: electrophysiological implications 754
Electrophysiological integration 755
In vitro integration 755
In vivo integration 756
Arrhythmogenic risk 757
Antiarrhythmic potential 758
Cell and gene therapies for cardiac arrhythmias 758
Cell and gene therapies for bradyarrhythmias – biological pacemakers 758
Gene therapy approaches to generate biological pacemakers 759
Cell therapy approaches 759
Cell and gene therapies for cardiac tachyarrhythmias 759
Cell and gene therapy strategies for AF 760
Cell and gene therapies for VT 761
References 762
CHAPTER 69 Towards Non-invasive Mapping and Imaging of Cardiac Arrhythmias 764
Introduction 764
Atrial fibrillation 765
Non-invasive cardiac imaging to assess structural substrate of AF 765
Non-invasive cardiac imaging to assess electrical remodeling of the LA 768
Sudden cardiac death: ventricular tachyarrhythmias and ventricular fibrillation 769
Myocardial scar 771
Myocardial ischemia and viability 772
Sympathetic innervation 773
References 775
CHAPTER 70 Mapping and Ablation of Ventricular Arrhythmias in Patients with Congenital Heart Disease 778
Introduction 778
VT risk in CHD 779
VT mapping in CHD 780
Tetralogy of Fallot (TOF) 780
Ebstein’s anomaly 787
Other CHD 790
Disclosure 790
References 790
CHAPTER 71 Mapping and Imaging of Supraventricular Arrhythmias in Adult Complex Congenital Heart Disease 793
Introduction 793
Anatomy of the conduction system in CHD 793
Sinus node 793
Atrioventricular (AV) node and His–Purkinje system 794
Supraventricular arrhythmias in CHD 795
Intra-atrial reentrant tachycardia (IART) 795
Focal atrial tachycardias 796
Atrial fibrillation (AF) 796
Approach to imaging, mapping and ablation 796
Arrhythmias in common forms of CHD 798
Atrial septal defect (ASD) 798
Atrioventricular canal defect 799
Ebstein’s anomaly 800
L-transposition of the great arteries (L-TGA) 800
Heterotaxy syndromes 800
Fontan palliation 801
Tetralogy of Fallot (TOF) 802
D-transposition of the great arteries (D-TGA) 805
References 807
CHAPTER 72 Remodeling and Reverse Remodeling: Mapping/Imaging Findings 810
Remodeling due to myocardial ischemia 810
Atrial remodeling due to myocardial ischemia 810
Ventricular remodeling due to myocardial ischemia 810
Remodeling and reverse remodeling in HF 811
Atrial remodeling due to HF 812
Ventricular remodeling due to HF 814
Remodeling by arrhythmic electrical activity 815
Ventricular remodeling due to arrhythmic electrical activity 816
References 817
CHAPTER 73 Epicardial Mapping of Longstanding Persistent Atrial Fibrillation 819
Introduction 819
Unipolar or bipolar electrograms? 820
Wave-mapping 820
Double potentials and fractionated electrograms 822
Paroxysmal AF 823
Persistent AF 824
Longitudinal dissociation and effective conduction velocity 824
Endo-epicardial breakthrough 825
Quantification of the electropathological substrate of AF 828
References 829
CHAPTER 74 Use of Intracardiac Echocardiography to Guide Ablation of Atrial and Ventricular Arrhythmias 831
Introduction 831
ICE basics 831
Radial 831
Advantages 832
Trans-septal catheterization 832
Supraventricular tachyarrhythmias 834
Atrial fibrillation (AF) 834
Atrial flutter 835
Inappropriate sinus tachycardia 836
Ventricular tachyarrhythmias 836
Idiopathic 836
Papillary muscles 837
Scar 837
Epicardial ablation 837
Complex congenital heart disease 838
References 838
CHAPTER 75 Role of Magnetic Resonance Imaging in Electrophysiology 841
Introduction 841
Main limitations of voltage mapping alone 841
Cardiac MRI for scar assessment 842
Real-time integration of MRI and voltage data 843
Electrogram characteristics of hyperenhancing regions 843
Identification of substrate in non-ischemic cardiomyopathies 845
Acute and chronic assessment of ablative lesion formation 846
Atrial scar assessment 848
MRI thermography during ablation 848
References 848
CHAPTER 76 Magnetic Resonance Phase Mapping for Myocardial Structural Abnormalities Relevant to Arrhythmias 850
Introduction 850
Why MR phase mapping? 850
Phase mapping technique 851
Early applications of phase mapping 852
Phase mapping and myocardial synchrony 852
Phase mapping and coronary artery disease 854
Phase mapping and LV hypertrophy 854
Phase mapping and RV disease 855
Phase mapping and arrhythmogenic heart disease 855
References 855
CHAPTER 77 Three-Dimensional Mapping to Guide Optimal Catheter Position in Cardiac Resynchronization Therapy 858
Introduction 858
Mapping the CS 859
Data on optimal LV pacing site location 861
Mapping LV scar: implications for CRT 862
Mapping the electrical substrate 862
Inverse electrocardiographic imaging: technical aspects 863
Mapping the mechanical substrate 864
References 867
CHAPTER 78 Array Tomography for Cardiovascular Imaging: Description of Technique and Potential Applications 869
Introduction 869
Array tomography procedures 869
Application of array tomography to the study of blood vessel microstructure 871
Imaging cardiac innervation with array tomography 874
Acknowledgements 877
References 877
CHAPTER 79 Optimizing Patient Safety and Image Quality with Cardiac Mapping and Imaging Tools During Catheter Ablation 879
Introduction 879
Definitions 879
Radiation effects 880
Long-term effects of radiation exposure 880
Factors contributing to patient risk 880
Reducing radiation exposure 882
Table height and collimation 882
Imaging angle 882
Pulsed fluoroscopy 883
Fluoroscopy and alternative imaging technologies in mapping and ablation procedures 884
Guidelines to manage radiation dose 885
Education and policies for medical professionals 886
References 887
CHAPTER 80 The Future of Cardiac Mapping: Dawn of a New Decade 889
Cardiac mapping 889
Technological advances and challenges 893
Special subjects 902
Heart failure 902
Cardiac resynchronization therapy (CRT) 903
Myocardial ischemia and ischemic cardiomyopathy 903
Myocardial infarction 903
Myocardial scar 904
Atrial fibrillation (AF) 904
Ventricular tachyarrhythmia 905
Hypertrophic cardiomyopathy (HCM) 907
Right ventricular cardiomyopathies (ARVD/C) 911
Cardiac amyloidosis 911
Cardiac sarcoidosis 912
Myocarditis 912
Role of cardiac mapping and imaging in evaluation of stem cell implants 912
Cardiac involvement in carcinoid disease 912
Molecular imaging 912
Molecular MRI 913
Imaging in screening and risk stratification 914
Screening in highly trained athletes 914
Brugada syndrome 914
Cardiac imaging and outcomes 914
Non-invasive cardiac imaging in patient management and outcome 914
American College of Cardiology Foundation/American Heart Association (ACCF/AHA) practice guidelines 915
Future directions and advanced visualization 915
MR technologies 916
Optical imaging 918
Electromechanical wave imaging EWI and elastography 920
Electromechanical wave imaging EWI and elastography 920
Patient-specific approaches to analysis and treatment of heart rhythm disturbances and contractile dysfunction 921
Future of the cardiac EP laboratory 921
Molecular ablation 923
Direct visualization 925
Non-invasive stereotactic RF surgery for creation of ablation lesion in the LA 925
Future directions in mapping and imaging 925
Key areas for future imaging research 927
Authors’ note 929
Acknowledgements 930
References 930
Epilogue 941
Index 943

Erscheint lt. Verlag 16.10.2012
Vorwort Douglas P. Zipe
Sprache englisch
Themenwelt Medizin / Pharmazie Allgemeines / Lexika
Medizinische Fachgebiete Innere Medizin Kardiologie / Angiologie
ISBN-10 1-118-48160-7 / 1118481607
ISBN-13 978-1-118-48160-8 / 9781118481608
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 78,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
'Ars echocardiographica' - Schritt für Schritt zur …

von Andreas Hagendorff; Stephan Stoebe

eBook Download (2021)
Urban & Fischer Verlag - Fachbücher
129,99