An Introduction to Wavelets Through Linear Algebra

Buch | Hardcover
503 Seiten
1999
Springer-Verlag New York Inc.
978-0-387-98639-5 (ISBN)

Lese- und Medienproben

An Introduction to Wavelets Through Linear Algebra - Michael W. Frazier
64,15 inkl. MwSt
Mathematics majors at Michigan State University take a “Capstone” course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area in mathematics. This text was originally written for a Capstone course. Basicwavelettheoryisanaturaltopicforsuchacourse. Byname, wavelets date back only to the 1980s. On the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations. The author believes that the essentials of wavelet theory are suf?ciently elementary to be taught successfully to advanced undergraduates. This text is intended for undergraduates, so only a basic background in linear algebra and analysis is assumed. We do not require familiarity with complex numbers and the roots of unity. These are introduced in the ?rst two sections of chapter 1. In the remainder of chapter 1 we review linear algebra. Students should be familiar with the basic de?nitions in sections 1. 3 and 1. 4. From our viewpoint, linear transformations are the primary object of study; v Preface vi a matrix arises as a realization of a linear transformation. Many students may have been exposed to the material on change of basis in section 1. 4, but may bene?t from seeing it again. In section 1.

Prologue: Compression of the FBI Fingerprint Files.- Background: Complex Numbers and Linear Algebra.- The Discrete Fourier Transform.- Wavelets on ZN.- Wavelets on Z.- Wavelets on R.- Wavelets and Differential Equations.

Reihe/Serie Undergraduate Texts in Mathematics
Zusatzinfo XVI, 503 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
ISBN-10 0-387-98639-1 / 0387986391
ISBN-13 978-0-387-98639-5 / 9780387986395
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00