Discrete Stochastic Processes - Nicolas Privault

Discrete Stochastic Processes

Tools for Machine Learning and Data Science
Buch | Softcover
XII, 288 Seiten
2024
Springer International Publishing (Verlag)
978-3-031-65819-8 (ISBN)
53,49 inkl. MwSt

This text presents selected applications of discrete-time stochastic processes that involve random interactions and algorithms, and revolve around the Markov property. It covers recurrence properties of (excited) random walks, convergence and mixing of Markov chains, distribution modeling using phase-type distributions, applications to search engines and probabilistic automata, and an introduction to the Ising model used in statistical physics. Applications to data science are also considered via hidden Markov models and Markov decision processes. A total of 32 exercises and 17 longer problems are provided with detailed solutions and cover various topics of interest, including statistical learning.

Nicolas Privault received a PhD degree from the University of Paris VI, France. He was with the University of Evry, France, the University of La Rochelle, France, and the University of Poitiers, France. He is currently a Professor with the School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. His research interests are in the areas of stochastic analysis and its applications.

- 1. A Summary of Markov Chains.- 2. Phase-Type Distributions.- 3. Synchronizing Automata.- 4. Random Walks and Recurrence.- 5. Cookie-Excited Random Walks.- 6. Convergence to Equilibrium.- 7. The Ising Model.- 8. Search Engines.- 9. Hidden Markov Model.- 10. Markov Decision Processes.

Erscheinungsdatum
Reihe/Serie Springer Undergraduate Mathematics Series
Zusatzinfo XII, 288 p. 144 illus., 130 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Automata • Boolean model • Convergence and Mixing • Hawkes Processes • hidden Markov models • Markov Chain Monte Carlo • markov chains • Markov Decision Processes • random walks • Reinforcement Learning • Search Engines
ISBN-10 3-031-65819-1 / 3031658191
ISBN-13 978-3-031-65819-8 / 9783031658198
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00