Optimized Bayesian Dynamic Advising
Theory and Algorithms
Seiten
2005
Springer London Ltd (Verlag)
978-1-85233-928-9 (ISBN)
Springer London Ltd (Verlag)
978-1-85233-928-9 (ISBN)
r Contents 1 Introduction . 1 Motivation . 2 State of the art . 1 Operator supports . 2 Mainstream multivariate techniques . 3 Developed advising and its role in computer support . 10 2 Underlying theory . 1 General conventions . 2 Basic notions and notations .
This work summarizes the theoretical and algorithmic basis of optimized pr- abilistic advising. It developed from a series of targeted research projects s- ported both by the European Commission and Czech grant bodies. The source text has served as a common basis of communication for the research team. When accumulating and re?ning the material we found that the text could also serve as • a grand example of the strength of dynamic Bayesian decision making, • a practical demonstration that computational aspects do matter, • a reference to ready particular solutions in learning and optimization of decision-making strategies, • a source of open and challenging problems for postgraduate students, young as well as experienced researchers, • a departure point for a further systematic development of advanced op- mized advisory systems, for instance, in multiple participant setting. These observations have inspired us to prepare this book. Prague, Czech Republic Miroslav K´ arn´ y October 2004 Josef B¨ ohm Tatiana V. Guy Ladislav Jirsa Ivan Nagy Petr Nedoma Ludv´ ?k Tesa? r Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2. 1 Operator supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2. 2 Mainstream multivariate techniques . . . . . . . . . . . . . . . . . 4 1. 2. 3 Probabilistic dynamic optimized decision-making . . . . . . 6 1. 3 Developed advising and its role in computer support . . . . . . . . . 6 1. 4 Presentation style, readership andlayout . . . . . . . . . . . . . . . . . . . 7 1. 5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Underlying theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 1 General conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 2 Basic notions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This work summarizes the theoretical and algorithmic basis of optimized pr- abilistic advising. It developed from a series of targeted research projects s- ported both by the European Commission and Czech grant bodies. The source text has served as a common basis of communication for the research team. When accumulating and re?ning the material we found that the text could also serve as • a grand example of the strength of dynamic Bayesian decision making, • a practical demonstration that computational aspects do matter, • a reference to ready particular solutions in learning and optimization of decision-making strategies, • a source of open and challenging problems for postgraduate students, young as well as experienced researchers, • a departure point for a further systematic development of advanced op- mized advisory systems, for instance, in multiple participant setting. These observations have inspired us to prepare this book. Prague, Czech Republic Miroslav K´ arn´ y October 2004 Josef B¨ ohm Tatiana V. Guy Ladislav Jirsa Ivan Nagy Petr Nedoma Ludv´ ?k Tesa? r Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2. 1 Operator supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2. 2 Mainstream multivariate techniques . . . . . . . . . . . . . . . . . 4 1. 2. 3 Probabilistic dynamic optimized decision-making . . . . . . 6 1. 3 Developed advising and its role in computer support . . . . . . . . . 6 1. 4 Presentation style, readership andlayout . . . . . . . . . . . . . . . . . . . 7 1. 5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Underlying theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 1 General conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 2 Basic notions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Underlying theory.- Approximate and feasible learning.- Approximate design.- Problem formulation.- Solution and principles of its approximation: learning part.- Solution and principles of its approximation: design part.- Learning with normal factors and components.- Design with normal mixtures.- Learning with Markov-chain factors and components.- Design with Markov-chain mixtures.- Sandwich BMTB for mixture initiation.- Mixed mixtures.- Applications of the advisory system.- Concluding remarks.
Erscheint lt. Verlag | 10.10.2005 |
---|---|
Reihe/Serie | Advanced Information and Knowledge Processing |
Zusatzinfo | XVII, 529 p. |
Verlagsort | England |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Computerprogramme / Computeralgebra | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Schlagworte | Bayesian dynamic decision making under uncertainty • biological sciences • biomedical engineering • control engineering • Fully probabilistic design of advising strategies • Information science • pattern recognition • Probabilistic advising • Probabilistic dynamic mixtures • supervisory control of nonlinear uncertain systems • Support of operators of complex processes |
ISBN-10 | 1-85233-928-4 / 1852339284 |
ISBN-13 | 978-1-85233-928-9 / 9781852339289 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media
Buch | Softcover (2021)
Springer (Verlag)
29,99 €
Interlingua zur Gewährleistung semantischer Interoperabilität in der …
Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99 €
Eine Einführung mit Java
Buch | Hardcover (2020)
dpunkt (Verlag)
44,90 €