Probability and Computing
Cambridge University Press (Verlag)
978-0-521-83540-4 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.
Michael Miztenmacher is a John L. Loeb Associate Professor in Computer Science at Harvard University. Having written nearly 100 articles on a variety of topics in computer science, his research focuses on randomized algorithms and networks. He has received an NSF CAREER Award and an Alfred P. Sloan Research Fellowship. In 2002, he shared the IEEE Information Theory Society Best Paper Award for his work on error-correcting codes. Eli Upfal is Professor and Chair of Computer Science at Brown University. He has published more than 100 papers in refereed journals and professional conferences, and is the inventor of more than ten patents. His main research interests are randomized computation and probabilistic analysis of algorithms, with applications to optimization algorithms, communication networks, parallel and distributed computing and computational biology.
Preface; 1. Events and probability; 2. Discrete random variables and expectation; 3. Moments and deviations; 4. Chernoff bounds; 5. Balls, bins and random graphs; 6. The probabilistic method; 7. Markov chains and random walks; 8. Continuous distributions and the Poisson process; 9. Entropy, randomness and information; 10. The Monte Carlo method; 11. Coupling of Markov chains; 12. Martingales; 13. Pairwise independence and universal hash functions; 14. Balanced allocations; References.
Erscheint lt. Verlag | 31.1.2005 |
---|---|
Zusatzinfo | Worked examples or Exercises; 50 Line drawings, unspecified |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 183 x 260 mm |
Gewicht | 807 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-521-83540-2 / 0521835402 |
ISBN-13 | 978-0-521-83540-4 / 9780521835404 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich