Elements of Applied Bifurcation Theory

(Autor)

Buch | Hardcover
632 Seiten
2004 | 3rd ed. 2004
Springer-Verlag New York Inc.
978-0-387-21906-6 (ISBN)

Lese- und Medienproben

Elements of Applied Bifurcation Theory - Yuri Kuznetsov
181,89 inkl. MwSt
  • Titel erscheint in neuer Auflage
  • Artikel merken
The years that have passed since the publication of the first edition of this book proved that the basic principles used to select and present the material made sense. To start reading this book, only a moder­ ate knowledge of linear algebra and calculus is required.
The years that have passed since the publication of the first edition of this book proved that the basic principles used to select and present the material made sense. The idea was to write a simple text that could serve as a seri­ ous introduction to the subject. Of course, the meaning of "simplicity" varies from person to person and from country to country. The word "introduction" contains even more ambiguity. To start reading this book, only a moder­ ate knowledge of linear algebra and calculus is required. Other preliminaries, qualified as "elementary" in modern mathematics, are explicitly formulated in the book. These include the Fredholm Alternative for linear systems and the multidimensional Implicit Function Theorem. Using these very limited tools, a framewo:k of notions, results, and methods is gradually built that allows one to read (and possibly write) scientific papers on bifurcations of nonlinear dynamical systems. Among other things, progress in the sciences means that mathematical results and methods that once were new become standard and routinely used by the research and development community. Hopefully, this edition of the book will contribute to this process. The book's structure has been kept intact. Most of the changes introduced reflect recent theoretical and software developments in which the author was involved. Important changes in the third edition can be summarized as follows. A new section devoted to the fold-flip bifurcation for maps has appeared in Chapter 9.

1 Introduction to Dynamical Systems.- 2 Topological Equivalence, Bifurcations, and Structural Stability of Dynamical Systems.- 3 One-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 4 One-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 5 Bifurcations of Equilibria and Periodic Orbits in n-Dimensional Dynamical Systems.- 6 Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria.- 7 Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems.- 8 Two-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 9 Two-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 10 Numerical Analysis of Bifurcations.- A Basic Notions from Algebra, Analysis, and Geometry.- A.1 Algebra.- A.1.1 Matrices.- A.1.2 Vector spaces and linear transformations.- A.1.3 Eigenvectors and eigenvalues.- A.1.4 Invariant subspaces, generalized eigenvectors, and Jordan normal form.- A.1.5 FredholmAlternative Theorem.- A.1.6 Groups.- A.2 Analysis.- A.2.1 Implicit and Inverse Function Theorems.- A.2.2 Taylor expansion.- A.2.3 Metric, normed, and other spaces.- A.3 Geometry.- A.3.1 Sets.- A.3.2 Maps.- A.3.3 Manifolds.- References.

Review of earlier edition"I know of no other book that so clearly explains the basic phenomena of bifurcation theory." Math Reviews "The book is a fine addition to the dynamical systems literature. It is good to see, in our modern rush to quick publication, that we, as a mathematical community, still have time to bring together, and in such a readable and considered form, the important results on our subject." Bulletin of the AMSFrom the reviews of the third edition:"In the third edition of this textbook, the material again has been slightly extended while the main structure of the book was kept. … the clear structure of the book allows applied scientists to use it as a reference book. … Kuznetsov’s book on applied bifurcation theory is still very useful both as a textbook and as a reference work for researchers from the natural sciences, engineering or economics." (Jörg Härterich, Zentralblatt MATH, Vol. 1082, 2006)“This book deals with the theory ofdynamical systems relevant for applications. The material is presented in a systematic and very readable form. It covers recent developments in bifurcation theory, with special attention to efficient numerical implementations. The text aims at an audience of graduate and Ph.D. students in applied mathematics, and researchers in science and engineering, who use dynamical systems and bifurcation analysis as a tool. Each chapter contains useful examples and many illustrations.” (Dirk Roose, Bulletin of the Belgian Mathematical Society, 2007)

Reihe/Serie Applied Mathematical Sciences ; 112
Zusatzinfo XXII, 632 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 0-387-21906-4 / 0387219064
ISBN-13 978-0-387-21906-6 / 9780387219066
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99