A Short Course in Ordinary Differential Equations - Qingkai Kong

A Short Course in Ordinary Differential Equations

(Autor)

Buch | Softcover
XII, 267 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2014
Springer International Publishing (Verlag)
978-3-319-35426-2 (ISBN)
50,28 inkl. MwSt
This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré-Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm-Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for seniorundergraduates as well.

Qingkai Kong is a Professor and Director of Undergraduate Studies in the Department of Mathematical Sciences at Northern Illinois University. He holds a M.Sc and Ph.D from the University of Alberta. Dr. Kong is a recipient of the Huo Ying-Dong Teaching Award and has refereed for over 50 journals.

Preface.- Notation and Abbreviations.- 1. Initial Value Problems.- 2. Linear Differential Equations.- 3. Lyapunov Stability Theory.- 4. Dynamic Systems and Planar Autonomous Equations.- 5. Introduction to Bifurcation Theory.- 6. Second-Order Linear Equations.- Answers and Hints.- Bibliography.- Index.

"All material is carefully organized and presented in a transparent manner. The text contains a large number of solved problems which illustrate well theoretical material. Each chapter concludes with a selection of exercises for independent study; hints and answers to exercises are collected in the end of the book along with a useful list of references and a subject index. ... Undoubtedly, this book is a very valuable contribution to existing texts on qualitative theory of differential equations." (Yuriy V. Rogovchenko, zbMATH, Vol. 1326.34007, 2016)

Erscheinungsdatum
Reihe/Serie Universitext
Zusatzinfo XII, 267 p. 55 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte Bifurcation Theory • Differential calculus and equations • Dynamical Systems and Ergodic Theory • Linear Differential Equations • Lyapunov function method • Mathematics • mathematics and statistics • Nonlinear Science • Ordinary differential equations • Poincaré-Bendixson theorem • Stability Theory • Sturm-Liouville problems • Sturm–Liouville problems
ISBN-10 3-319-35426-4 / 3319354264
ISBN-13 978-3-319-35426-2 / 9783319354262
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00