COMPSTAT -

COMPSTAT

Proceedings in Computational Statistics 12th Symposium held in Barcelona, Spain, 1996

Albert Prat (Herausgeber)

Buch | Softcover
XII, 507 Seiten
1996 | 1. Softcover reprint of the original 1st ed. 1996
Physica (Verlag)
978-3-7908-0953-4 (ISBN)
106,99 inkl. MwSt
COMPSTAT symposia have been held regularly since 1974 when they started in Vienna. This tradition has made COMPSTAT a major forum for the interplay of statistics and computer sciences with contributions from many well known scientists all over the world. The scientific programme of COMPSTAT '96 covers all aspects of this interplay, from user-experiences and evaluation of software through the development and implementation of new statistical ideas. All papers presented belong to one of the three following categories: - Statistical methods (preferable new ones) that require a substantial use of computing; - Computer environments, tools and software useful in statistics; - Applications of computational statistics in areas of substantial interest (environment, health, industry, biometrics, etc.).

I Keynote Papers.- Scientific Statistics, Teaching, Learning and the Computer.- Trends in the Information Technologies Markets - The Future.- II Invited Papers.- Robust Procedures for Regression Models with ARIMA Errors.- Functional Imaging Analysis Software-Computational Olio.- Automatic Modelling of Daily Series of Economic Activity.- New Methods for Quantitative Analysis of Short-Term Economic Activity.- Classification and Computers: Shifting the Focus.- Image Processing, Markov Chain Approach.- A Study of E-optimal Designs for Polynominal Regression.- From Fourier to Wavelet Analysis of Time Series.- Profile Methods.- A New Generation of a Statistical Computing Environment on the Net.- On Multidimensional Nonparametric Regression.- III Contributed Papers.- Parallel Model Selection in Logistic Regression Analysis.- On a Weighted Principal Component Model to Forecast a Continuous Time Series.- Exact Iterative Computation of the Multivariate Minimum Volume Ellipsoid Estimator with a Branch and Bound Algorithm.- Automatic Segmentation by Decision Trees.- Karhunen-Loève and Wavelet Approximations to the Inverse Problem.- Bootstrapping Uncertainty in Image Analysis.- BASS: Bayesian Analyzer of Event Sequences.- Assessing Sample Variability in the Visualization Techniques Related to Principal Component Analysis: Bootstrap and Alternative Simulation Methods.- A Fast Algorithm for Robust Principal Components Based on Projection Pursuit.- Hybrid System: Neural Networks and Genetic Algorithms Applied in Nonlinear Regression and Time Series Forecasting.- Do Parametric Yield Estimates Beat Monte Carlo?.- Testing Convexity.- Zonoid Data Depth: Theory and Computation.- PADOX, A Personal Assistant for Experimental Design.- Computing M-estimates.- Survival Analysis withMeasurement Error on Covariates.- Partial Imputation Method in the EM Algorithm.- On the Uses and Costs of Rule-Based Classification.- Small Sequential Designs that Stay Close to a Target.- Statistical Classification Methods for Protein Fold Class Prediction.- Restoration of Blurred Images when Blur is Incompletely Specified.- Loglinear Random Effect Models for Capture-Recapture Assessment of Completeness of Registration.- Estimation of First Contact Distribution Functions for Spatial Patterns in S-PLUS.- Barcharts and Class Characterization with Taxonomic Qualitative Variables.- Prediction of Failure Events when No Failures have Occurred.- Generalising Regression and Discriminant Analysis: Catastrophe Models for Plasma Confinement and Threshold Data.- Parallel Strategies for Estimating the Parameters of a Modified Regression Model on a SIMD Array Processor.- Stochastic Algorithms in Estimating Regression Models.- Generalized Nonlinear Models.- The Use of Statistical Methods for Operational and Strategic Forecasting in European Industry.- Bayesian Analysis for Likelihood-Based Nonparametric Regression.- Calculating the Exact Characteristics of Truncated Sequential Probability Ratio Tests Using Mathematica.- How to Find Suitable Parametric Models Using Genetic Algorithms. Application to Feedforward Neural Networks.- Some Computational Aspects of Exact Maximum Likelihood Estimation of Time Series Models.- Estimation After Model Building: A First Step.- Logistic Classification Trees.- Computing High Breakdown Point Estimators for Planned Experiments and for Models with Qualitative Factors.- Posterior Simulation for Feed Forward Neural Network Models.- Bivariate Survival Data Under Censoring: Simulation Procedure for Group Sequential Boundaries.- The Wavelet Transform in Multivariate Data Analysis.- "Replication-free" Optimal Designs in Regression Analysis.- STEPS Towards Statistics.- File Grafting: a Data Sets Communication Tool.- Projections on Convex Cones with Applications in Statistics.- Partial Correlation Coefficient Comparison in Graphical Gaussian Models 429.- The Robustness of Cross-over Designs to Error Mis-specification.- ISODEPTH: a Program for Depth Contours.- Non Parametric Control Charts for Sequential Process.- An Iterative Projection Algorithm and Some Simulation Results.- Computational Asymptotics.- An Algorithm for Detecting the Number of Knots in Non Linear Principal Component Analysis.- Generation and Investigation of Multivariate Distributions Having Fixed Discrete Marginals.- A Simulation Framework for Re-estimation of Parameters in a Population Model for Application to a Particular Locality.- A Semi-Fuzzy Partition Algorithm.- Estimation in Two - Sample Nonproportional Hazards Models in Clinical Trials by an Algorithmic Method.- How to Obtain Efficient Exact Designs from Optimal Approximate Designs.- Papers Classified by Topics.

Erscheint lt. Verlag 31.7.1996
Zusatzinfo XII, 507 p.
Verlagsort Heidelberg
Sprache englisch
Maße 155 x 235 mm
Gewicht 782 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte bayesian models • Bayessche Methoden • classification • Data Analysis • expectation–maximization algorithm • Expectation-Maximization algorithm • Image Analysis • Klassifikation • likelihood • Lineare Modelle • linear models • Mathematica • Regression Analysis • Statistics • Statistik • Survival Analysis • Time Series • Zeitreihen
ISBN-10 3-7908-0953-5 / 3790809535
ISBN-13 978-3-7908-0953-4 / 9783790809534
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00