Algebras, Quivers and Representations -

Algebras, Quivers and Representations

The Abel Symposium 2011
Buch | Softcover
XX, 298 Seiten
2015 | 1. Softcover reprint of the original 1st ed. 2013
Springer Berlin (Verlag)
978-3-642-43018-3 (ISBN)
90,94 inkl. MwSt
This book features survey and research papers from The Abel Symposium 2011. It illustrates and extends such connections with algebraic geometry, cluster algebra theory, commutative algebra, dynamical systems and triangulated categories.

This book features survey and research papers from The Abel Symposium 2011: Algebras, quivers and representations, held in Balestrand, Norway 2011. It examines a very active research area that has had a growing influence and profound impact in many other areas of mathematics like, commutative algebra, algebraic geometry, algebraic groups and combinatorics. This volume illustrates and extends such connections with algebraic geometry, cluster algebra theory, commutative algebra, dynamical systems and triangulated categories. In addition, it includes contributions on further developments in representation theory of quivers and algebras.

Algebras, Quivers and Representations is targeted at researchers and graduate students in algebra, representation theory and triangulate categories.

C. Amiot: Preprojective algebras, singularity categories and orthogonal decompositions.- L. Avramov : (Contravariant) Koszul duality for DG algebras.- R. Buchweitz: The fundamental group of a morphism in a triangulated category.- K. Erdmann: On Hochschild cohomology of weakly symmetric special biserial algebras.- D. Happel: Algebras of finite global dimension.- K. Igusa (with G. Todorov): Continuous Frobenius categories.- D.A. Jorgensen: Triangle functors from generic hypersurfaces.- Y. Kodama (with L. Williams): Combinatorics of KP solutions from the real Grassmannian.- H. Krause: Morphisms determined by objects in triangulated categories.- P. Malicki (with J. A. de la Pena and A. Skowronski): Cycle-finite module categories.- J.A. de la Pena, P. Malicki and A. Skowronski: Cycle-finite module categories.- C.M. Ringel: Distinguished bases of exceptional modules.- A. Skowronski (with P. Malicki and J. A. de la Pena): Cycle-finite module categories.- D. Speyer and H. Thomas: Acyclic cluster algebras revisited.- H. Thomas and D. Speyer: Acyclic cluster algebras revisited.- G. Todorov and K. Igusa: Continuous Frobenius categories.- L. Williams and Y. Kodama: Combinatorics of KP solutions from the real Grassmannian.- D. Zacharia and D. Happel: Algebras of finite global dimension.

Erscheinungsdatum
Reihe/Serie Abel Symposia
Zusatzinfo XX, 298 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 492 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Algebra • Algebraic Geometry • Associative rings and algebras • Category Theory, Homological Algebra • cluster algebras • Commutative rings and algebras • Dynamical Systems and Ergodic Theory • Homological algebra • mathematics and statistics • Quivers • Representation Theory • Triangulated categories
ISBN-10 3-642-43018-X / 364243018X
ISBN-13 978-3-642-43018-3 / 9783642430183
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00