Bounded Arithmetic, Propositional Logic and Complexity Theory - Jan Krajicek

Bounded Arithmetic, Propositional Logic and Complexity Theory

(Autor)

Buch | Hardcover
360 Seiten
1995
Cambridge University Press (Verlag)
978-0-521-45205-2 (ISBN)
159,95 inkl. MwSt
An up-to-date, unified treatment of research in this interdisciplinary subject, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and computational complexity theory and lists a number of intriguing open problems.
This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing open problems. An introduction to the basics of logic and complexity theory is followed by discussion of important results in propositional proof systems and systems of bounded arithmetic. More advanced topics are then treated, including polynomial simulations and conservativity results, various witnessing theorems, the translation of bounded formulas (and their proofs) into propositional ones, the method of random partial restrictions and its applications, direct independence proofs, complete systems of partial relations, lower bounds to the size of constant-depth propositional proofs, the method of Boolean valuations, the issue of hard tautologies and optimal proof systems, combinatorics and complexity theory within bounded arithmetic, and relations to complexity issues of predicate calculus. Students and researchers in mathematical logic and complexity theory will find this comprehensive treatment an excellent guide to this expanding interdisciplinary area.

1. Introduction; 2. Preliminaries; 3. Basic complexity theory; 4. Basic propositional logic; 5. Basic bounded arithmetic; 6. Definability of computations; 7. Witnessing theorems; 8. Definability and witnessing in second order theories; 9. Translations of arithmetic formulas; 10. Finite axiomatizability problem; 11. Direct independence proofs; 12. Bounds for constant-depth Frege systems; 13. Bounds for Frege and extended Frege systems; 14. Hard tautologies and optimal proof systems; 15. Strength of bounded arithmetic; References; Index.

Erscheint lt. Verlag 24.11.1995
Reihe/Serie Encyclopedia of Mathematics and its Applications
Verlagsort Cambridge
Sprache englisch
Maße 162 x 242 mm
Gewicht 650 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Logik / Mengenlehre
ISBN-10 0-521-45205-8 / 0521452058
ISBN-13 978-0-521-45205-2 / 9780521452052
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00