A Set of Examples of Global and Discrete Optimization - Jonas Mockus

A Set of Examples of Global and Discrete Optimization

Applications of Bayesian Heuristic Approach

(Autor)

Buch | Hardcover
322 Seiten
2000 | 2000 ed.
Springer (Verlag)
978-0-7923-6359-0 (ISBN)
160,49 inkl. MwSt
This book shows how the Bayesian Approach (BA) improves well­ known heuristics by randomizing and optimizing their parameters. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization prob­ lems.
This book shows how the Bayesian Approach (BA) improves well­ known heuristics by randomizing and optimizing their parameters. That is the Bayesian Heuristic Approach (BHA). The ten in-depth examples are designed to teach Operations Research using Internet. Each example is a simple representation of some impor­ tant family of real-life problems. The accompanying software can be run by remote Internet users. The supporting web-sites include software for Java, C++, and other lan­ guages. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization prob­ lems. The techniques are evaluated in the spirit of the average rather than the worst case analysis. In this context, "heuristics" are understood to be an expert opinion defining how to solve a family of problems of dis­ crete or global optimization. The term "Bayesian Heuristic Approach" means that one defines a set of heuristics and fixes some prior distribu­ tion on the results obtained. By applying BHA one is looking for the heuristic that reduces the average deviation from the global optimum. The theoretical discussions serve as an introduction to examples that are the main part of the book. All the examples are interconnected. Dif­ ferent examples illustrate different points of the general subject. How­ ever, one can consider each example separately, too.

Preface. Part I: About the Bayesian Approach. 1. General Ideas. 2. Explaining BHA by Knapsack Example. Part II: Software for Global Optimization. 3. Introduction. 4. Fortran. 5. Turbo C. 6. C++. 7. Java 1.0. 8. Java 1.2. Part III: Examples of Models. 9. Nash Equilibrium. 10. Walras Equilibrium. 11. Inspection Model. 12. Differential Game. 13. Investment Problem. 14. Exchange Rate Prediction. 15. Call Centers. 16. Optimal Scheduling. 17. Sequential Decisions. References. Index.

Reihe/Serie Applied Optimization ; 41
Zusatzinfo XIV, 322 p.
Verlagsort Dordrecht
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Graphentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 0-7923-6359-0 / 0792363590
ISBN-13 978-0-7923-6359-0 / 9780792363590
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99