Regression Modeling Strategies - Frank E. Harrell  Jr.

Regression Modeling Strategies

With Applications to Linear Models, Logistic Regression, and Survival Analysis
Buch | Softcover
572 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2001
Springer-Verlag New York Inc.
978-1-4419-2918-1 (ISBN)
106,99 inkl. MwSt
Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".

1 Introduction.- 2 General Aspects of Fitting Regression Models.- 3 Missing Data.- 4 Multivariable Modeling Strategies.- 5 Resampling, Validating, Describing, and Simplifying the Model.- 6 S-Plus Software.- 7 Case Study in Least Squares Fitting and Interpretation of a Linear Model.- 8 Case Study in Imputation and Data Reduction.- 9 Overview of Maximum Likelihood Estimation.- 10 Binary Logistic Regression.- 11 Logistic Model Case Study 1: Predicting Cause of Death.- 12 Logistic Model Case Study 2: Survival of Titanic Passengers.- 13 Ordinal Logistic Regression.- 14 Case Study in Ordinal Regression, Data Reduction, and Penalization.- 15 Models Using Nonparametric Transformations of X and Y.- 16 Introduction to Survival Analysis.- 17 Parametric Survival Models.- 18 Case Study in Parametric Survival Modeling and Model Approximation.- 19 Cox Proportional Hazards Regression Model.- 20 Case Study in Cox Regression.

Erscheint lt. Verlag 1.12.2010
Reihe/Serie Springer Series in Statistics
Zusatzinfo XXIV, 572 p.
Verlagsort New York, NY
Sprache englisch
Maße 178 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4419-2918-5 / 1441929185
ISBN-13 978-1-4419-2918-1 / 9781441929181
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00