Multiscale, Nonlinear and Adaptive Approximation

Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday

Ronald DeVore, Angela Kunoth (Herausgeber)

Buch | Hardcover
XXIV, 660 Seiten
2009 | 2009
Springer Berlin (Verlag)
978-3-642-03412-1 (ISBN)
213,99 inkl. MwSt
On the occasion of his 60th birthday in October 2009, friends, collaborators, and admirers of Wolfgang Dahmen have organized this volume which touches on va- ous of his research interests. This volume will provide an easy to read excursion into many important topics in applied and computational mathematics. These include nonlinear and adaptive approximation, multivariate splines, subdivision schemes, multiscale and wavelet methods, numerical schemes for partial differential and boundary integral equations, learning theory, and high-dimensional integrals. College Station, Texas, USA Ronald A. DeVore Paderborn, Germany Angela Kunoth June 2009 vii Acknowledgements We are deeply grateful to Dr. Martin Peters and Thanh-Ha Le Thi from Springer for realizing this book project and to Frank Holzwarth for technical support. ix Contents Introduction: Wolfgang Dahmen s mathematical work. . . . . . . . . . . . . . . . 1 Ronald A. DeVore and Angela Kunoth 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 The early years: Classical approximation theory. . . . . . . . . . . . . . . . 2 3 Bonn, Bielefeld, Berlin, and multivariate splines . . . . . . . . . . . . . . . 2 3. 1 Computer aided geometric design . . . . . . . . . . . . . . . . . . . . 3 3. 2 Subdivision and wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 Wavelet and multiscale methods for operator equations. . . . . . . . . . 5 4. 1 Multilevel preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4. 2 Compression of operators. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 Adaptive solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 Constructionandimplementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 Hyperbolic partial differential equations and conservation laws . . . 8 8 Engineering collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 Thepresent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 Finalremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Publications by Wolfgang Dahmen (as of summer 2009). . . . . . . . . . . . . . . 10 The way things were in multivariate splines: A personal view. . . . . . . . . . . 19 Carl de Boor 1 Tensor product spline interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Quasiinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 MultivariateB-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Kergininterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ronald DeVore's speciality is Nonlinear Approximation Theory. He is The Walter E. Koss Professor of Mathematics at Texas A&M University.He was elected a member of the American Academy of Arts and Sciences in 2001 and received an Honorary Doctorate from RWTH Aachen in 2004. In 2006, he was a Plenary Lecturer at the International Congress of Mathematicians in Madrid.

Introduction: Wolfgang Dahmen's mathematical work.- The way things were in multivariate splines: A personal view.- On the efficient computation of high-dimensional integrals and the approximation by exponential sums.- Adaptive and anisotropic piecewise polynomial approximation.- Anisotropic function spaces with applications.- Nonlinear approximation and its applications.- Univariate subdivision and multi-scale transforms: The nonlinear case.- Rapid solution of boundary integral equations by wavelet Galerkin schemes.- Learning out of leaders.- Optimized wavelet preconditioning.- Multiresolution schemes for conservation laws.- Theory of adaptive finite element methods: An introduction.- Adaptive wavelet methods for solving operator equations: An overview.- Optimal multilevel methods for (grad), (curl), and (div) systems on graded and unstructured grids.

Erscheint lt. Verlag 5.9.2009
Zusatzinfo XXIV, 660 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 1300 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte algorithm • Calculus • Finite Element Method • high-dimensional integrals • multiscale and wavelet methods • multivariate splines • nonlinear and adaptive approximation • Numerical analysis • Operator • partial differential and boundary integral equatio • partial differential and boundary integral equations • Splines • Wavelet
ISBN-10 3-642-03412-8 / 3642034128
ISBN-13 978-3-642-03412-1 / 9783642034121
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99