Multiscale, Nonlinear and Adaptive Approximation
Springer Berlin (Verlag)
978-3-642-03412-1 (ISBN)
Ronald DeVore's speciality is Nonlinear Approximation Theory. He is The Walter E. Koss Professor of Mathematics at Texas A&M University.He was elected a member of the American Academy of Arts and Sciences in 2001 and received an Honorary Doctorate from RWTH Aachen in 2004. In 2006, he was a Plenary Lecturer at the International Congress of Mathematicians in Madrid.
Introduction: Wolfgang Dahmen's mathematical work.- The way things were in multivariate splines: A personal view.- On the efficient computation of high-dimensional integrals and the approximation by exponential sums.- Adaptive and anisotropic piecewise polynomial approximation.- Anisotropic function spaces with applications.- Nonlinear approximation and its applications.- Univariate subdivision and multi-scale transforms: The nonlinear case.- Rapid solution of boundary integral equations by wavelet Galerkin schemes.- Learning out of leaders.- Optimized wavelet preconditioning.- Multiresolution schemes for conservation laws.- Theory of adaptive finite element methods: An introduction.- Adaptive wavelet methods for solving operator equations: An overview.- Optimal multilevel methods for (grad), (curl), and (div) systems on graded and unstructured grids.
Erscheint lt. Verlag | 5.9.2009 |
---|---|
Zusatzinfo | XXIV, 660 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1300 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | algorithm • Calculus • Finite Element Method • high-dimensional integrals • multiscale and wavelet methods • multivariate splines • nonlinear and adaptive approximation • Numerical analysis • Operator • partial differential and boundary integral equatio • partial differential and boundary integral equations • Splines • Wavelet |
ISBN-10 | 3-642-03412-8 / 3642034128 |
ISBN-13 | 978-3-642-03412-1 / 9783642034121 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich