Business Analytics - Walter R. Paczkowski

Business Analytics

Data Science for Business Problems
Buch | Softcover
XXXVIII, 387 Seiten
2023 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-87025-6 (ISBN)
90,94 inkl. MwSt
This book focuses on three core knowledge requirements for effective and thorough data analysis for solving business problems. This volume will be useful to business data analysts, data scientists, and market research professionals, as well as aspiring practitioners in business data analytics.

This book focuses on three core knowledge requirements for effective and thorough data analysis for solving business problems. These are a foundational understanding of:

1. statistical, econometric, and machine learning techniques;

2. data handling capabilities;

3. at least one programming language.

Practical in orientation, the volume offers illustrative case studies throughout and examples using Python in the context of Jupyter notebooks. Covered topics include demand measurement and forecasting, predictive modeling, pricing analytics, customer satisfaction assessment, market and advertising research, and new product development and research. This volume will be useful to business data analysts, data scientists, and market research professionals, as well as aspiring practitioners in business data analytics. It can also be used in colleges and universities offering courses and certifications in business data analytics, data science, and market research.


Walter R. Paczkowski, PhD, has worked at AT&T, AT&T Bell Labs, and AT&T Labs. He founded Data Analytics Corp., a statistical consulting company, in 2001. Dr. Paczkowski is also a part-time lecturer of economics at Rutgers University. He is the author of Deep Data Analytics for New Product Development (2020), Pricing Analytics: Models and Advanced Quantitative Techniques for Product Pricing (2018), and Market Data Analysis Using JMP (2016).

1. Types of Business Problems.- 2. Data for Business Problems.- 3. Beginning Data Handling.- 4. Data Preprocessing.- 5. Data Visualization: The Basics.- 6. OLS Regression Basics.- 7. Time Series Basics.- 8. Statistical Tables.- 9. Advanced Data Handling.- 10. Advanced OLS.- 11. Logistic Regression.- 12. Classification.

Erscheinungsdatum
Zusatzinfo XXXVIII, 387 p. 238 illus., 215 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 644 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Allgemeines / Lexika
Schlagworte Business Analytics • Business Intelligence • classification • Data Cube • Data Science • Data Visualization • Econometrics • Logistic Regression • machine learning • Regression Analysis • Statistics
ISBN-10 3-030-87025-1 / 3030870251
ISBN-13 978-3-030-87025-6 / 9783030870256
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00