Bayesian Approaches to Shrinkage and Sparse Estimation - Dimitris Korobilis, Kenichi Shimizu

Bayesian Approaches to Shrinkage and Sparse Estimation

Buch | Softcover
136 Seiten
2022
now publishers Inc (Verlag)
978-1-63828-034-7 (ISBN)
95,95 inkl. MwSt
Introduces the reader to the world of Bayesian model determination by surveying modern shrinkage and variable selection algorithms and methodologies. Bayesian inference is a natural probabilistic framework for quantifying uncertainty and learning about model parameters.
Bayesian Approaches to Shrinkage and Sparse Estimation introduces the reader to the world of Bayesian model determination by surveying modern shrinkage and variable selection algorithms and methodologies. Bayesian inference is a natural probabilistic framework for quantifying uncertainty and learning about model parameters, and this feature is particularly important for inference in modern models of high dimensions and increased complexity. The authors begin with a linear regression setting in order to introduce various classes of priors that lead to shrinkage/sparse estimators of comparable value to popular penalized likelihood estimators (e.g. ridge, LASSO). They examine various methods of exact and approximate inference, and discuss their pros and cons. Finally, they explore how priors developed for the simple regression setting can be extended in a straightforward way to various classes of interesting econometric models. In particular, the following case-studies are considered that demonstrate application of Bayesian shrinkage and variable selection strategies to popular econometric contexts: i) vector autoregressive models; ii) factor models; iii) time-varying parameter regressions; iv) confounder selection in treatment effects models; and v) quantile regression models. A MATLAB package and an accompanying technical manual allows the reader to replicate many of the algorithms described in this review.

1. Introduction
2. Hierarchical (Full Bayes) Priors
3. Bayesian Computation with Hierarchical Priors
4. Bayesian Shrinkage and Variable Selection Beyond Linear Regression
5. Concluding Remarks
References

Erscheinungsdatum
Reihe/Serie Foundations and Trends® in Econometrics
Verlagsort Hanover
Sprache englisch
Maße 156 x 234 mm
Gewicht 202 g
Themenwelt Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-63828-034-7 / 1638280347
ISBN-13 978-1-63828-034-7 / 9781638280347
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Übungsaufgaben – Fallstudien – Lösungen

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
24,95
Set aus Lehr- und Arbeitsbuch

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
35,95