Advances in the Application of Lasers in Materials Science (eBook)

Paolo M. Ossi (Herausgeber)

eBook Download: PDF
2018 | 1st ed. 2018
XIX, 395 Seiten
Springer International Publishing (Verlag)
978-3-319-96845-2 (ISBN)

Lese- und Medienproben

Advances in the Application of Lasers in Materials Science -
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book covers recent advances and progress in understanding both the fundamental science of lasers interactions in materials science, as well as a special emphasis on emerging applications enabled by the irradiation of materials by pulsed laser systems. The different chapters illustrate how, by careful control of the processing conditions, laser irradiation can result in efficient material synthesis, characterization, and fabrication at various length scales from atomically-thin 2D materials to microstructured periodic surface structures. This book serves as an excellent resource for all who employ lasers in materials science, spanning such different disciplines as photonics, photovoltaics, and sensing, to biomedical applications.


 



Paolo M. Ossi is Associate Professor of Physics of Matter at the Politecnico di Milano. His main research interests include modeling the interaction between energetic beams (photons; particles) and solid surfaces, the controlled nanoparticle synthesis (oxides, transition and noble metals) by Pulsed Laser Deposition in dense gases and liquids, the growth and evolution under solar irradiation of snow nanocrystals (natural and artificial). He is author, or co-author of about 200 publications in International journals, numerous invited contributions to international volumes. He is co-editor of five books/proceedings. He authored the books Disordered Materials - An Introduction (Springer, Berlin, 2nd Ed., 2006) and Plasmi per Superfici (Polipress, Milano, 2006). He is holder of two patents and Co-Editor of the Springer Series Topics in Applied Physics. 


Antonio Miotello is full professor of Experimental Physics at Trento University. His main research interests include microscopic processes involved in growth of thin films by using deposition techniques: Physical Vapor Deposition and Laser-Ablation, synthesis of nanoparticles of composite materials having catalytic properties for hydrolysis of chemical hydrides and development of related reactor chambers,  synthesis of photocatalysts for water purification or splitting for hydrogen production with photolectrochemical cells, modeling the growth of nanostructures using Density Functional Theory and Monte Carlo simulation.
He is author, or co-author of more than 350 peer reviewed papers published in international journals and holder of two patents.


Maria Dinescu is Senior Scientist 1st degree, research group leader (Photonic Processing of Advanced Materials: ppam.inflpr.ro), National Institute for Lasers, Plasma and Radiation Physics (INFLPR), Bucharest, Romania. Her main research interests include Laser materials processing (Laser Induced forward transfer-LIFT, Matrix assisted pulsed laser evaporation (MAPLE), Pulsed laser deposition (PLD)), ferroelectrics, high k dielectrics, materials for energy. She is author or co-author of more than 250 peer reviewed papers published in international journals, 9 book chapters. She is co-editor of seven books/proceedings. She serves as Co-editor of Applied Surface Science.


David B. Geohegan is Distinguished Research Staff of Oak Ridge National Laboratory and Group Leader Functional Hybrid Materials at the Center for Nanophase Materials Sciences. He is a Fellow of the American Physical Society. His main research interests include understanding and controlling the synthesis of thin films and nanostructured materials through the development of time resolved laser spectroscopy and imaging diagnostic techniques; fundamental studies of growth mechanisms of single-walled carbon nanotubes and nanohorns, graphene and two-dimensional metal chalcogenide crystals, nanoparticles, inorganic and organic nanowires; laser interactions with materials for synthesis, characterization, and processing of nanoscale materials which exhibit new nanoscale properties; exploring the functionality of nanoscale materials for energy, including hydrogen storage, solid state lighting, and photovoltaics. He is author, or co-author, of more than 250 peer reviewed papers published in international journals and holder of seven patents.  


Paolo M. Ossi is Associate Professor of Physics of Matter at the Politecnico di Milano. His main research interests include modeling the interaction between energetic beams (photons; particles) and solid surfaces, the controlled nanoparticle synthesis (oxides, transition and noble metals) by Pulsed Laser Deposition in dense gases and liquids, the growth and evolution under solar irradiation of snow nanocrystals (natural and artificial). He is author, or co-author of about 200 publications in International journals, numerous invited contributions to international volumes. He is co-editor of five books/proceedings. He authored the books Disordered Materials – An Introduction (Springer, Berlin, 2nd Ed., 2006) and Plasmi per Superfici (Polipress, Milano, 2006). He is holder of two patents and Co-Editor of the Springer Series Topics in Applied Physics. Antonio Miotello is full professor of Experimental Physics at Trento University. His main research interests include microscopic processes involved in growth of thin films by using deposition techniques: Physical Vapor Deposition and Laser-Ablation, synthesis of nanoparticles of composite materials having catalytic properties for hydrolysis of chemical hydrides and development of related reactor chambers,  synthesis of photocatalysts for water purification or splitting for hydrogen production with photolectrochemical cells, modeling the growth of nanostructures using Density Functional Theory and Monte Carlo simulation. He is author, or co-author of more than 350 peer reviewed papers published in international journals and holder of two patents.Maria Dinescu is Senior Scientist 1st degree, research group leader (Photonic Processing of Advanced Materials: ppam.inflpr.ro), National Institute for Lasers, Plasma and Radiation Physics (INFLPR), Bucharest, Romania. Her main research interests include Laser materials processing (Laser Induced forward transfer-LIFT, Matrix assisted pulsed laser evaporation (MAPLE), Pulsed laser deposition (PLD)), ferroelectrics, high k dielectrics, materials for energy. She is author or co-author of more than 250 peer reviewed papers published in international journals, 9 book chapters. She is co-editor of seven books/proceedings. She serves as Co-editor of Applied Surface Science.David B. Geohegan is Distinguished Research Staff of Oak Ridge National Laboratory and Group Leader Functional Hybrid Materials at the Center for Nanophase Materials Sciences. He is a Fellow of the American Physical Society. His main research interests include understanding and controlling the synthesis of thin films and nanostructured materials through the development of time resolved laser spectroscopy and imaging diagnostic techniques; fundamental studies of growth mechanisms of single-walled carbon nanotubes and nanohorns, graphene and two-dimensional metal chalcogenide crystals, nanoparticles, inorganic and organic nanowires; laser interactions with materials for synthesis, characterization, and processing of nanoscale materials which exhibit new nanoscale properties; exploring the functionality of nanoscale materials for energy, including hydrogen storage, solid state lighting, and photovoltaics. He is author, or co-author, of more than 250 peer reviewed papers published in international journals and holder of seven patents.  

Preface 6
Contents 8
Contributors 15
1 Laser Synthesis, Processing, and Spectroscopy of Atomically-Thin Two Dimensional Materials 20
1.1 Introduction 21
1.2 Key Challenges in the Synthesis of Atomically-Thin 2D Materials with Controllable Functionality 23
1.3 Laser-Based Synthesis and Processing of 2D Materials 25
1.3.1 Pulsed Laser Deposition of 2D Materials 25
1.3.2 Laser Techniques for “Top-Down” and “Bottom Up” Defect Engineering of 2D Crystals 26
1.3.3 Substrateless Growth of 2D Materials by Laser Vaporization 28
1.3.4 Laser Thinning of Layered Two-Dimensional Materials 29
1.3.5 Laser Conversion of Two-Dimensional Materials 31
1.3.6 Laser Crystallization and Annealing of TMDs 32
1.3.7 Laser-Induced Phase Conversion of Two-Dimensional Crystals 33
1.3.8 Future Directions of Laser Synthesis and Processing of Atomically-Thin 2D Materials 34
1.4 Optical Techniques for 2D Material Characterization 34
1.4.1 Overview 34
1.4.2 Raman Spectroscopy of 2D Materials 37
1.4.3 Photoluminescence Spectroscopy of 2D Materials 42
1.4.4 Second Harmonic Generation Microscopy of 2D Materials 44
1.4.5 Ultrafast Spectroscopy of 2D Materials 45
1.5 Summary 49
References 50
2 The Role of Defects in Pulsed Laser Matter Interaction 57
2.1 Introduction 57
2.2 Intrinsic Defects 58
2.2.1 Field Enhancement by Structural Defects 59
2.2.2 Field Enhancement by Impurities 60
2.2.3 Thermal Damage by Absorber Impurities 60
2.2.4 Irradiation Area Dependence of Laser-Induced Threshold Fluences 63
2.3 Laser-Generated Defects 65
2.3.1 Dielectrics 68
2.3.2 Metals 70
2.3.3 Semiconductors 73
2.4 Conclusion 74
References 76
3 Surface Functionalization by Laser-Induced Structuring 80
3.1 Introduction 80
3.2 Functionality of Textured Surfaces 81
3.2.1 Wettability 81
3.2.2 Color 84
3.2.3 Field Enhancement 86
3.2.4 Templates for Biological and Technological Films 87
3.3 Laser Patterning 88
3.3.1 Multi-beam Interference and Ablation 88
3.3.2 Single-Beam Laser Induced Periodic Surface Structures (LIPSS) 90
References 99
4 Laser-Inducing Extreme Thermodynamic Conditions in Condensed Matter to Produce Nanomaterials for Catalysis and the Photocatalysis 106
4.1 Introduction 107
4.2 Mechanisms Involved in PLD to Synthesize NPs 107
4.3 Thermodynamic Modeling of Phase Explosion in the Nanosecond Laser Ablation of Metals 108
4.3.1 Thermodynamics of Metastable Liquid Metals 108
4.3.2 Heat Diffusion Problem 110
4.3.3 Vaporization 111
4.3.4 Phase Explosion 112
4.3.5 Computational Framework 114
4.3.6 Results and Discussion 115
4.4 Pulsed Laser Deposition of Nanostructured Catalysts: An Application for PEC (Photo-Electrochemical Cell) Technology 117
4.4.1 Porous Versus Compact Catalyst Morphology for Photoanodes Functionalization 118
4.5 Conclusions 122
References 122
5 Insights into Laser-Materials Interaction Through Modeling on Atomic and Macroscopic Scales 124
5.1 Introduction 125
5.2 Transient Response of Materials to Ultrafast Laser Excitation: Optical Properties 126
5.2.1 Metals: Transient Optical Properties 127
5.2.2 Bandgap Materials 139
5.2.3 Semiconductors: Non-thermal Melting and Pump-Probe Experiments 141
5.3 Continuum-Level Modeling of Thermal and Mechanical Response to Laser Excitation at the Scale of the Laser Spot 143
5.3.1 Thermal Modeling of Laser Melting and Resolidification 144
5.3.2 Thermoelastic Modeling of the Dynamic Evolution of Laser-Induced Stresses 147
5.3.3 Material Redistribution Through Elastoplasticity and Hydrodynamic Flow 150
5.4 Molecular Dynamics Modeling of Laser-Materials Interactions 152
5.4.1 Molecular Dynamics: Generation of Crystal Defects 153
5.4.2 Molecular Dynamics: Ablative Generation of Laser-Induced Periodic Surface Structures 157
5.5 Concluding Remarks 159
References 161
6 Ultrafast Laser Micro and Nano Processing of Transparent Materials—From Fundamentals to Applications 166
6.1 Introduction 167
6.2 Direct Fabrication Using Gaussian Laser Beams 168
6.2.1 Standard Fabrication Approach 169
6.2.2 Near-Field Approach 174
6.2.3 Alternative Technology to Laser Machining: Focused Ion Beam (FIB) Machining 177
6.3 Hybrid Approach 178
6.3.1 Single-Step Processing: Laser Machining in Suitable Environment 179
6.3.2 Multi-step Processing: Laser Irradiation, Followed by Chemical Etching and Heat Treatment 181
6.4 Non-diffractive Approach for Flexible Fabrication 182
6.4.1 Zero-Order Bessel Beams 183
6.4.2 Vortex Beams 196
6.4.3 Curved Beams 199
6.5 Conclusions 201
References 202
7 Molecular Orbital Tomography Based on High-Order Harmonic Generation: Principles and Perspectives 208
7.1 Introduction 209
7.2 High-Order Harmonic Generation 210
7.2.1 Lewenstein Model 213
7.2.2 Saddle Point Approximation 215
7.2.3 Macroscopic Effects 216
7.3 HHG for Atomic and Molecular Spectroscopy 217
7.4 Molecular Orbital Tomography Based on HHG 219
7.4.1 Impulsive Molecular Alignment 220
7.4.2 Theory of HHG-based Molecular Orbital Tomography 223
7.4.3 Experimental Molecular Tomography 226
7.4.4 Open Issues and Possible Solutions 229
7.4.5 Conclusions and Perspectives 231
References 231
8 Laser Ablation Propulsion and Its Applications in Space 234
8.1 What Is Laser Ablation Propulsion and What Use Is It? 234
8.2 Photon Beam Propulsion 235
8.3 Laser Ablation Propulsion 235
8.4 Pulsed Laser Ablation Propulsion Details 236
8.5 Optima 240
8.6 Why not CW? 241
8.7 Breakthrough Starshot 243
8.8 Theory for Calculating Cmopt 243
8.9 Plasma Regime Theory for Ablation Propulsion 243
8.10 Vapor Regime Theory 245
8.11 Combined Theory 246
8.12 Ultrashort Pulses 248
8.13 Diffraction and Range as They Affect Space System Design 250
8.14 Thermal Coupling with Repetitive Pulses 251
8.15 Practical Case: Thermal Coupling for a Laser Rocket 253
8.16 Applications 253
8.16.1 Interplanetary Laser Rocket 253
8.16.2 L’ADROIT 256
8.16.3 Something Good for the Environment 258
8.16.4 Fiber Laser Arrays Versus Monolithic Solid State Lasers 258
8.16.5 Repetitive Pulse Monolithic Diode Pumped Solid State Lasers 260
8.16.6 Perspective 260
References 261
9 Laser Structuring of Soft Materials: Laser-Induced Forward Transfer and Two-Photon Polymerization 264
9.1 Introduction 264
9.2 Laser-Induced Forward Transfer (LIFT) 267
9.2.1 LIFT in Solid Versus Liquid Phase 267
9.2.2 LIFT for Device Fabrication: Towards Industrial Applications 273
9.2.3 Conclusions and Future Prospects 276
9.3 Laser Direct Writing Via Two Photon Polymerization (LDW Via TPP) 277
9.3.1 3D Biomimetic Structures for Tissue Engineering 277
9.3.2 Basics of LDW via TPP 278
9.3.3 LDW Via TPP of 3D Structures 280
9.3.4 Conclusions and Future Prospects 286
References 287
10 UV- and RIR-MAPLE: Fundamentals and Applications 291
10.1 Introduction 291
10.2 Conventional UV-MAPLE 293
10.3 UV-MAPLE: Applications 297
10.4 RIR-MAPLE: Motivation for Emulsion Targets 305
10.5 RIR-MAPLE: Frozen Emulsion Targets 306
10.6 RIR-MAPLE: Film Formation from Emulsion Targets 308
10.7 RIR-MAPLE: Impact of Primary Solvent, Secondary Solvent, Surfactant and Matrix in Frozen Emulsion Targets 310
10.8 RIR-MAPLE: Emulsion Targets for Hydrophilic Polymers 313
10.9 RIR-MAPLE: Applications Using Emulsion Targets 317
10.10 Conclusions 318
References 319
11 Combinatorial Laser Synthesis of Biomaterial Thin Films: Selection and Processing for Medical Applications 325
11.1 Introduction 325
11.2 Combinatorial Laser Synthesis Approaches 328
11.3 Biomaterials Selection for Biomedical Applications 331
11.3.1 Compositional Gradient Thin Films of Sr-Substituted and ZOL Modified HA 331
11.3.2 Combinatorial Maps Fabricated from Chitosan and Biomimetic Apatite for Orthopaedic Applications 336
11.3.3 Combinatorial Fibronectin Embedded in a Biodegradable Matrix by C-MAPLE 340
11.4 Discussion 346
11.5 Conclusions and Perspectives 347
References 348
12 Laser Synthesized Nanoparticles for Therapeutic Drug Monitoring 355
12.1 Historical Background 356
12.1.1 Therapeutic Drug Monitoring (TDM) 358
12.1.2 Epilepsy 358
12.1.3 Parkinson’s disease (PD) 359
12.1.4 Analytical techniques 359
12.2 Surface Enhanced Raman Spectroscopy (SERS) 361
12.2.1 SERS Sensors Obtained by Pulsed Laser Deposition 362
12.3 Application of PLA-Synthesized Nanostructured Gold Sensors to Detect Apomorphine and Carbamazepine 367
12.3.1 Apomorphine (APO) 367
12.3.2 Carbamazepine (CBZ) 371
12.4 Conclusion and Perspectives 375
References 375
13 Nonlinear Optics in Laser Ablation Plasmas 377
13.1 Introduction 377
13.2 Fundamentals of Harmonic Generation 379
13.3 Experimental Systems for Frequency up-Conversion in Laser Ablation Plasmas 383
13.4 Harmonic Generation in Nanosecond Laser Ablation Plasmas of Solid Targets 385
13.4.1 Third and Fifth Harmonic Generation in Nanosecond Laser Ablation Plasmas of Dielectrics 385
13.4.2 Low-Order Harmonic Generation in Laser Ablation Plasmas of Metals 387
13.4.3 Harmonic Generation by Atomic and Nanoparticle Precursors in Nanosecond Ablation Plasma of Semiconductors 390
13.4.4 Low-Order HG in Nanosecond Laser Ablation Plasmas of Carbon Containing Materials 394
13.4.5 Frequency Mixing in the Perturbative Regime in Laser Ablation Plasmas 396
13.5 Conclusions 398
References 399
Subject Index 402

Erscheint lt. Verlag 1.10.2018
Reihe/Serie Springer Series in Materials Science
Zusatzinfo XIX, 395 p. 187 illus., 117 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte biological applications • Laser Ablation • Laser-Matter Interactions • Laser Structuring of Materials • Material Modifications • Micro- and Nanoprocessing with Lasers • Nanostructured Surfaces • Pulsed Laser Irradiation • Ultrafast LaserPprocessing • Ultrashort Pulse Laser-Matter Interaction
ISBN-10 3-319-96845-9 / 3319968459
ISBN-13 978-3-319-96845-2 / 9783319968452
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Manufacturing Excellence in der Smart Factory

von Jürgen Kletti; Jürgen Rieger

eBook Download (2023)
Springer Vieweg (Verlag)
69,99