Data Science Thinking (eBook)

The Next Scientific, Technological and Economic Revolution

(Autor)

eBook Download: PDF
2018 | 1st ed. 2018
XX, 390 Seiten
Springer International Publishing (Verlag)
978-3-319-95092-1 (ISBN)

Lese- und Medienproben

Data Science Thinking - Longbing Cao
Systemvoraussetzungen
80,24 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education?  How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists?

Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective.

The topics cover an extremely wide spectrum of essential and relevant aspects of data science, spanning its evolution, concepts, thinking, challenges, discipline, and foundation, all the way to industrialization, profession, education, and the vast array of opportunities that data science offers. The book's three parts each detail layers of these different aspects.

The book is intended for decision-makers, data managers (e.g., analytics portfolio managers, business analytics managers, chief data analytics officers, chief data scientists, and chief data officers), policy makers, management and decision strategists, research leaders, and educators who are responsible for pursuing new scientific, innovation, and industrial transformation agendas, enterprise strategic planning, a next-generation profession-oriented course development, as well as those who are involved in data science, technology, and economy from an advanced perspective.

Research students in data science-related courses and disciplines will find the book useful for positing their innovative scientific journey, planning their unique and promising career, and competing within and being ready for the next generation of science, technology, and economy.



Longbing Cao holds a PhD in Pattern Recognition and Intelligent Systems from the Chinese Academy of Sciences, China and another PhD in Computing Science at the University of Technology Sydney, Australia. He is a professor of data science at UTS. He has been working on data science and analytics research, education, development, and enterprise applications since he was a CTO and then joined academia. Motivated by real-world significant and common challenges, he has been leading the team to develop theories, tools and applications for new areas including non-IID learning, actionable knowledge discovery, behavior informatics, and complex intelligent systems, in addition to issues related to artificial intelligence, knowledge discovery, machine learning, and their enterprise applications. In data science and analytics, he initiated the Data Science and Knowledge Discovery lab at UTS in 2007, the Advanced Analytics Institute in 2011, the degrees Master of Analytics (Research) and PhD in Analytics in 2011 which are recognized as the world's first degrees in data science, the IEEE Task Force on Data Science and Advanced Analytics (DSAA) and IEEE Task Force on Behavior, Economic and Soci-cultural Computing in 2013, the IEEE Conference on Data Science and Advanced Analytics (DSAA), the ACM SIGKDD Australia and New Zealand Chapter in 2014, and the International Journal of Data Science and Analytics with Springer in 2015. He served as program and general chairs of conferences such as KDD2015. In enterprise data science innovation, his team has successfully delivered many large projects for government and business organizations in over 10 domains including finance/capital markets, banking, health and car insurance, health, telco, recommendation, online business, education, and the public sector including ATO, DFS, DHS, DIBP and IP Australia, resulting in billions of dollar savings and mentions in government, industry, media and OECD reports.

Longbing Cao holds a PhD in Pattern Recognition and Intelligent Systems from the Chinese Academy of Sciences, China and another PhD in Computing Science at the University of Technology Sydney, Australia. He is a professor of data science at UTS. He has been working on data science and analytics research, education, development, and enterprise applications since he was a CTO and then joined academia. Motivated by real-world significant and common challenges, he has been leading the team to develop theories, tools and applications for new areas including non-IID learning, actionable knowledge discovery, behavior informatics, and complex intelligent systems, in addition to issues related to artificial intelligence, knowledge discovery, machine learning, and their enterprise applications. In data science and analytics, he initiated the Data Science and Knowledge Discovery lab at UTS in 2007, the Advanced Analytics Institute in 2011, the degrees Master of Analytics (Research) and PhD in Analytics in 2011 which are recognized as the world's first degrees in data science, the IEEE Task Force on Data Science and Advanced Analytics (DSAA) and IEEE Task Force on Behavior, Economic and Soci-cultural Computing in 2013, the IEEE Conference on Data Science and Advanced Analytics (DSAA), the ACM SIGKDD Australia and New Zealand Chapter in 2014, and the International Journal of Data Science and Analytics with Springer in 2015. He served as program and general chairs of conferences such as KDD2015. In enterprise data science innovation, his team has successfully delivered many large projects for government and business organizations in over 10 domains including finance/capital markets, banking, health and car insurance, health, telco, recommendation, online business, education, and the public sector including ATO, DFS, DHS, DIBP and IP Australia, resulting in billions of dollar savings and mentions in government, industry, media and OECD reports.

1 The Data Science Era.- 2 What is Data Science.- 3 Data Science Thinking.- 4 Data Science Challenges.- 5 Data Science Discipline.- 6 Data Science Foundations.- 7 Data Science Techniques.- 8 Data Economy and Industrialization.- 9 Data Science Applications.- 10 Data Profession.- 11 Data Science Education.- 12 Prospects and Opportunities in Data Science.

Erscheint lt. Verlag 17.8.2018
Reihe/Serie Data Analytics
Data Analytics
Zusatzinfo XX, 390 p. 62 illus., 61 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Wirtschaft
Schlagworte Advanced Analytics • Big Data Analytics • data analytics • Data economy • Data education • Data profession • Data Quality • Data Science • Statistics
ISBN-10 3-319-95092-4 / 3319950924
ISBN-13 978-3-319-95092-1 / 9783319950921
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43