Principles of Mathematics for Economics
Springer International Publishing (Verlag)
978-3-319-44713-1 (ISBN)
- Noch nicht erschienen - erscheint am 04.10.2026
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
This textbook provides a comprehensive and rigorous introduction to various mathematical topics that play a key role in economics and finance. Motivated by economic applications, the authors introduce students to key mathematical ideas through an economic viewpoint, starting from the real line and moving to n-dimensional spaces, with a special emphasis on global optimization. Additionally, the text helps unacquainted, but intellectually curious, students become familiar with mathematical proofs.
The book is suitable for both self-study and rigorous introductory mathematics courses for undergraduate students majoring in economics or finance.
Simone Cerreia-Vioglio is Associate Professor at the Department of Decision Sciences at Università Bocconi in Milan. Massimo Marinacci holds the AXA-Bocconi Chair in Risk at the Department of Decision Sciences at Università Bocconi in Milan. Elena Vigna is Associate Professor at the Department Esomas at the Università di Torino.
Part I Structures.- 1 Sets and Numbers: An Intuitive Introduction.- 2 Cartesian Structure and R^n.- 3 Linear Structure.- 4 Euclidean Structure.- 5 Topological Structure.- 6 Functions.- 7 Cardinality.- Part II Discrete Analysis.- 8 Sequences.- 9 Series.- 10 Discrete Calculus.- Part III Continuity.- 11 Limits of Functions.- 12 Continuous Functions.- Part IV Linear and Nonlinear Analysis.- 13 Linear Functions and Operators.- 14 Concave Functions.- 15 Homogeneous Functions.- 16 Lipschitz Functions.- 17 Supermodular Functions.- Part V Optima.- 18 Optimization Problems.- 19 Semicontinuous optimization.- 20 Projections and Approximations.- 21 Forms and spectra.- Part VI Differential Calculus.- 22 Derivatives.- 23 Differential Calculus in Several Variables.- 24 Differential Methods.- 25 Approximation.- 26 Concavity and Differentiability.- 27 Nonlinear Rieszs Theorems.- 28 Implicit Functions.- 29 Inverse Functions.- 30 Study of Functions.- Part VII Differential Optimization.- 31 Unconstrained Optimization.- 32 Equality Constraints.- 33 Inequality Constraints.- 34 General Constraints.- 35 Intermezzo: Correspondences.- 36 Parametric Optimization Problems.- 37 Interdependent Optimization.- Part VIII Integration.- 38 The Riemann Integral.- 39 Improper Riemann integrals.- 40 Parametric Riemann integrals.- 41 Stieltjes Integral.- 42 Moments.- Part IX Appendices.- A Binary Relations.- B Permutations.- C Notions of Trigonometry.- D Elements of Intuitive Logic.- E Mathematical Induction.- F Cast of Characters.
Erscheinungsdatum | 04.02.2019 |
---|---|
Zusatzinfo | Illustrationen |
Verlagsort | Cham |
Sprache | englisch |
Original-Titel | Principi di Matematica per l'Economia |
Maße | 155 x 235 mm |
Einbandart | kartoniert |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Wirtschaft ► Volkswirtschaftslehre | |
Schlagworte | Differential Calculus • free and constrained optimization • functions of one and more variables • Integral calculus • linear algebra • Linear and Multilinear Algebras, Matrix Theory • Linear Operators • mathematics and statistics • real functions • sequences • Sequences, Series, Summability • vector spaces |
ISBN-10 | 3-319-44713-0 / 3319447130 |
ISBN-13 | 978-3-319-44713-1 / 9783319447131 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich