Quasiconvex Optimization and Location Theory - J.A. dos Santos Gromicho

Quasiconvex Optimization and Location Theory

Buch | Softcover
219 Seiten
2011
Springer-Verlag New York Inc.
978-1-4613-3328-9 (ISBN)
106,99 inkl. MwSt
grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref.
grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro­ grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C­ programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com­ positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason why so much effort has been placed into finding an exhaustive classification of the different weak forms of convexity, establishing a new definition just to satisfy some desirable property in the most general way possible. This book does not aim at all the subtleties of the different generalizations of convexity, but concentrates on the most general of them all, quasiconvex programming. Chapter 5 shows clearly where the real difficulties appear.

1 Introduction.- 2 Elements of Convexity.- 2.1 Generalities.- 2.2 Convex sets.- 2.3 Convex functions.- 2.4 Quasiconvex functions.- 2.5 Other directional derivatives.- 3 Convex Programming.- 3.1 Introduction.- 3.2 The ellipsoid method.- 3.3 Stopping criteria.- 3.4 Computational experience.- 4 Convexity in Location.- 4.1 Introduction.- 4.2 Measuring convex distances.- 4.3 A general model.- 4.4 A convex location model.- 4.5 Characterizing optimality.- 4.6 Checking optimality in the planar case.- 4.7 Computational results.- 5 Quasiconvex Programming.- 5.1 Introduction.- 5.2 A separation oracle for quasiconvex functions.- 5.3 Easy cases.- 5.4 When we meet a “bad” point.- 5.5 Convergence proof.- 5.6 An ellipsoid algorithm for quasiconvex programming.- 5.7 Improving the stopping criteria.- 6 Quasiconvexity in Location.- 6.1 Introduction.- 6.2 A quasiconvex location model.- 6.3 Computational results.- 7 Conclusions.

Reihe/Serie Applied Optimization ; 9
Zusatzinfo XXII, 219 p.
Verlagsort New York, NY
Sprache englisch
Maße 160 x 240 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-4613-3328-8 / 1461333288
ISBN-13 978-1-4613-3328-9 / 9781461333289
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99