Design and Manufacturing of Active Microsystems (eBook)

eBook Download: PDF
2011 | 2011
XII, 444 Seiten
Springer Berlin (Verlag)
978-3-642-12903-2 (ISBN)

Lese- und Medienproben

Design and Manufacturing of Active Microsystems -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents the design and manufacturing of microsystems as well as necessary key technologies developed within the Collaborative Research Center 516. The research efforts of this collaboration are focused on active micro systems which are based on the electromagnetic actuator principle. The travel of the investigated actuator systems is on the order of several millimeters. The total construction size of the actuator is on the range of several centimeters whereas essential structures being several micrometers. The methods and the production technologies that are investigated on the basis of various research models incorporate the fundamental process chains of microsystems.

Preface 6
Contents 8
Chapter 1 Introduction 14
1.1 Initial Situation 14
1.2 Prototype Concepts for Active Microsystems 17
1.3 Scientific Development 19
1.4 Outline 20
Part I Design and Construction 21
Chapter 2 Electromagnetic Design of Microactuators 22
Abstract 22
2.1 Forms of Electromagnetic Microactuators 22
2.2 Design and Construction 23
2.3 Material Properties 24
2.4 Coil Forms 25
2.5 Functional Principles 25
2.5.1 Variable Reluctance (VR) Principle 25
2.5.2 PM Synchronous Principle 27
2.5.3 Hybrid Principle 28
2.5.4 Bearing and Guidance Concepts 30
2.6 Design of Micromotors 30
2.6.1 Linear Synchronous Micromotors 31
2.6.2 Synchronous Micromotor with Radial Flux 31
2.6.3 Synchronous Micromotor with Axial Flux 32
2.6.4 Linear VR Step Micromotors 33
2.6.5 Modular Linear VR Step Micromotor 35
2.6.6 Linear VR Step Micromotor with Integrated Magnetic Guidance 36
2.6.7 Rotating VR Step Micromotors 37
Acknowledgements 38
References 39
Chapter 3 Drive Systems Based on Electromagnetic Microactuators 40
Abstract 40
3.1 Configuration of Drive Systems Based on Electromagnetic Microactuators 40
3.2 Power Supply 41
3.2.1 Electrical Parameters of the Linear Microactuators 42
3.2.2 Linear Series Regulator 42
3.2.3 Switching DC-DC Converter – Inductive 43
3.2.4 Switched Capacitor DC-DC Converter 44
3.3 Current Command Generation 49
3.3.1 Permanent Magnet Synchronous Motor 50
3.3.2 Variable Reluctance Step Motor 50
3.4 Position Control 51
3.4.1 Principle of Sliding Mode Control 52
3.4.2 Modified Sliding Mode Control 53
Acknowledgements 57
References 58
Chapter 4 Modular Computer Aided Design Environment for Active Microsystems 59
Abstract 59
4.1 Introduction 59
4.2 Phase of Preliminary Design 62
4.2.1 Intraweb Knowledge Storage Service 62
4.2.2 Interactive Design of Multi-Dimensional Function Structures 62
4.2.3 Evaluation of Morpholgies 63
4.2.4 Web-based Design Catalogue System 64
4.2.5 Optimization of Microcoils 64
4.2.6 Building Blocks for Active Microsystems 65
4.3 3D-Model Synthesis and Optimization 66
4.3.1 Linking CAD and FEA Models for Optimization 66
4.3.2 Tolerance Analysis and Synthesis in MEMS-Design 66
4.3.3 Rule Based Verification of Assembly 67
4.4 Synthesis and Optimization of Processes and Process Sequences 68
4.4.1 Rule Based Validation of Processing Sequences 69
4.4.2 Simulation of the Silicon Wet-Etching Process 70
4.4.3 Simulation of Diffraction Effects During UV Depth Lithography 72
4.4.4 Optimization of Lithographic Masks 74
4.4.5 Conclusion and Outlook 75
4.4 Synthesis and Optimization of Processes and Process Sequences 68
4.4.1 Rule Based Validation of Processing Sequences 69
4.4.2 Simulation of the Silicon Wet-Etching Process 70
4.4.3 Simulation of Diffraction Effects During UV Depth Lithography 72
4.4.4 Optimization of Lithographic Masks 74
4.4.5 Conclusion and Outlook 75
Acknowledgements 75
References 76
Part II Guiding and Measuring in Active Microsystems 77
Chapter 5 Wear Behavior in Microactuator Interfaces 78
Abstract 78
5.1 Introduction 78
5.2 Test Systems 79
5.2.1 Nanoindentation and Scratch Test 80
5.2.2 Tape Abrasive Wear Test 81
5.2.3 Rotational Test System 83
5.2.4 Oscillating Test 85
5.3 Fabrication Process of Tribological Surfaces 86
5.3.1 Physical Vapor Deposition (PVD) 86
5.3.2 Plasma Enhanced Chemical Vapor Deposition (PECVD) 87
5.3.3 Hybrid Processes (PVD + PECVD) 87
5.4 Experimental Investigations 88
5.4.1 Investigations with AFM Based Methods 88
5.4.2 Tape Abrasive Wear Tests 93
5.4.3 Rotational Tests 93
5.4.4 Oscillating Tests 94
5.5 Conclusion 95
Acknowledgements 95
References 95
Chapter 6 Friction Behavior in Microsystems 98
Abstract 98
6.1 Introduction 98
6.2 Preparation of Microguides and Bearings 99
6.2.1 Vacuum Coating 100
6.2.2 Tribological Microguide 100
Sliding Guide 100
Ball Bearings 102
6.3 Characterization 102
6.3.1 Microfriction under Single Asperity Contact 103
6.3.2 Oscillating Friction Tester 103
6.3.3 Flat-Flat-Contact Friction Force Measuring System 103
6.4 Results 106
6.4.1 Microfriction 106
Models for Microfriction 106
Friction Reduction by Different Coating Systems 107
Load Dependence for Microcontacts 107
Influence of the Resulting Contact Area 108
Stick-Slip and Adhesion Phenomena 109
6.4.2 Friction of Microguides 110
Microguide 110
Friction of Ball Bearings 112
Friction of Integrated Guides of Microsystems 113
Tribological Properties of Rotary Actuators 113
6.5 Conclusion 115
Acknowledgements 116
References 116
Chapter 7 Active Linear Guiding Concepts for Microsystems 118
Abstract 118
7.1 Introduction 118
7.2 Active Aerostatic Guides for Microsystems 119
7.2.1 Requirements 119
7.2.2 Design and Properties of Aerostatic Microbearings 120
7.2.3 Construction and Alignment 124
7.3 Active Magnetic Guides for Microsystems 126
7.3.1 Requirements and Design 127
7.3.2 Prototypical Magnetic Guide 127
7.4 Capacitive Displacement Sensors for Active Guides 130
7.4.1 Design 130
7.4.2 Calibration 132
7.5 Conclusion 134
Acknowledgements 135
References 135
Chapter 8 Design of Sensors for Position Control of Microactuators 136
Abstract 136
8.1 Introduction, Requirements and Measurement Principle 136
8.2 Simulation of Integrated Laser Beam 3×3 Couplers 138
8.2.1 Requirements 138
8.2.2 Simulations 138
8.3 Production of Integrated 3×3 Couplers in Glass 141
8.3.1 Manufacturing Methods 141
8.3.2 Produced Couplers 142
8.4 Beam Guiding by Refractive and Diffractive Elements: Grating, Prism, Lenses 143
8.4.1 Grating as Beam Separation for Interference 144
8.4.2 Integration and Qualification of a 90. Prism 145
8.4.3 Beam Guiding Lens 146
8.5 Signal Detection 146
8.5.1 Photo Detectors 146
8.5.2 Positioning and Fixing 147
8.6 Realtime Signal Processing 147
8.6.1 Reference Fibre Coupler Setup 147
8.6.2 LabVIEW Algorithm for FPGA 148
8.6.3 FPGA DSP Results 150
8.7 Alignment and Fixing of Optical Components 150
8.7.1 Optical Elements and Blocks to Align 150
8.7.2 Alignment and Fixation 151
8.7.3 Adaptation to 1D and 2D Micromotor 151
8.8 Summary 152
Acknowledgements 153
References 153
Chapter 9 Tactile Dimensional Micrometrology 154
Abstract 154
9.1 Introduction 154
9.2 3D Microprobes 155
9.2.1 Working Principle of the Piezoresistive 3D Microprobe 156
9.2.2 Optimized Fabrication Process 158
9.2.3 Metrological Properties 160
Sensitivity Calibration 160
Probing Repeatability 160
3D Measurement 161
9.2.4 Optimized Membrane Designs 162
9.2.5 Application of the 3D Microprobe for Elasticity and Hardness Measurements 164
9.3 Calibration of Probing Forces 166
9.3.1 Compensation Balance Based Micro Force Measurement 166
9.3.2 Micro Force Transfer Standard for Probing Forces 167
9.4 Dimensional Standards for Micro Metrology 169
9.4.1 3D Silicon Artefact with Enhanced Groove Topography 169
9.4.2 3D Hybrid Artefact 170
Acknowledgements 172
References 172
Part III Manufacturing and Fabrication 174
Chapter 10 Fabrication of Magnetic Layers for Electromagnetic Microactuators 175
Abstract 175
10.1 Introduction 175
10.1.1 Soft Magnetic Thin-films 176
10.1.2 Hard Magnetic Thin films 176
10.2 Fabrication Technologies 177
10.3 Test Systems 179
10.3.1 Magnetic Properties Analysis 179
10.3.2 Composition and Structure Analysis 180
10.3.3 Methods for Residual Stress Determination 181
10.4 Experimental Investigations on Soft Magnetic Materials 181
10.4.1 Electroplated Soft Magnetic Materials 182
10.4.2 PVD Deposited Soft Magnetic Thin-films 184
10.4.3 Polymer Embedded Soft Magnetic Materials 186
10.5 Experimental Investigation on Hard Magnetic Materials 187
10.5.1 SmCo Deposited by PVD 187
10.5.2 Gas-flow Sputter Deposited SmCo 189
10.5.3 Electroplated Hard Magnetic Materials 189
10.5.4 Polymer Embedded Hard Magnetic Materials 191
10.6 System Integration Aspects 192
10.7 Conclusion 194
Acknowledgements 194
References 194
Chapter 11 Fabrication of Excitation Coils for Electromagnetic Microactuators 197
11.1 Introduction 197
11.2 Photoresist Pattern Creation 199
11.3 Electroplating of Cu Microcoils 204
11.4 Insulation 205
11.5 Integration of Coils into Microactuators 206
11.5.1 Planar Meander Coil 206
11.5.2 Planar Spiral Coils 207
Double-layer Spiral Coil 207
Four-layer Spiral Coil 209
Technology Study for a Spiral Coil with a Submicrometer Conductor Width 209
11.5.3 Vertical Meander Coil 209
11.5.4 Helical Coil 212
11.6 Conclusion 213
Acknowledgements 213
References 213
Chapter 12 Development and Fabrication of Electromagnetic Microactuators 215
Abstract 215
12.1 Introduction 215
12.2 Linear VR Stepper Motor 217
12.2.1 The First Generation 218
12.2.2 The Second Generation 220
12.2.3 Characterization 222
12.3 Rotating VR Stepper Motor 223
12.3.1 Fabrication 224
12.3.2 Characterization 226
12.4 Rotating Synchronous Micro Motors 227
12.4.1 Polymer Magnets 227
12.4.2 Fabrication 228
12.4.3 Characterization 230
12.5 Conclusion and Outlook 231
Acknowledgements 231
References 232
Chapter 13 Development and Fabrication of Linear and Multi-Axis Microactuators 233
Abstract 233
13.1 Introduction 233
13.2 Linear VR Microstep Motor 234
13.3 Linear Hybrid Microstep Motor 235
13.4 Linear Synchronous Micromotor 238
13.5 xy-Actuator Investigations 242
13.5.1 xy-Actuator Concept and Prototype 242
13.5.2 Investigations on Magnetic Levitation 242
13.6 VR Micro- and Nanopositionier for xy-Actuators 243
13.6.1 Approach 243
13.6.2 Actuator Geometry 243
13.6.3 Stator Fabrication 245
13.6.4 Traveler Fabrication 247
13.6.5 System Integration 247
13.7 Experimental 249
13.7.1 Driving force measurement 249
13.7.2 Levitation test 249
13.7.3 xy-nanopositioning system 250
13.8 Conclusion 250
Acknowledgements 251
References 251
Chapter 14 Micromachining of Parts for Microsystems 253
Abstract 253
14.1 Introduction 253
14.2 Microgrinding 254
14.2.1 Workpiece Surface and Geometry Quality in Microgrinding 255
14.2.2 CVD-Coated Grinding Wheels 255
Tool Development and Specifications of CVD-Coated Grinding Wheels 256
Grinding with CVD-Coated Grinding Wheels 257
14.2.3 Multi-Layered Metal Bonded Diamond Grinding Wheels 260
Grinding with Multiple Microprofiled Grinding Wheels 263
Grinding with Undercut Profiles 266
14.3 Microgrinding of Boreholes 268
14.3.1 Development of Microgrinding Pins 268
14.3.2 Microgrinding with the Developed Tools 268
14.3.3 Ultrasonic-Assisted Holegrinding with Profiled Tools 269
14.4 Conclusions 270
Acknowledgements 271
References 272
Part IV Microassembly 275
Chapter 15 Size-Adapted Manipulation Robots for Microassembly 276
Abstract 276
15.1 Introduction 276
Kinematic Considerations of Robot Structures 278
Kinematic Synthesis and Sensitivity Analysis 278
Performance Calculations and Terminology 279
15.2 Size-Adapted Robot for Microassembly 279
15.2.1 Robot Creation and Performance 280
15.2.2 Additional Sensors and their Integration 281
15.2.3 Assembly Uncertainty 284
15.3 Miniaturized Robot for Desktop Factories 284
15.3.1 Concept of the Robot Structure 285
15.3.2 Functional Model of a Desktop Factory Robot 287
15.3.3 Analyses of the Robot Structure 288
15.4 Conclusion 292
Acknowledgements 293
References 293
Chapter 16 Tools for Handling and Assembling of Microparts 294
Abstract 294
16.1 Introduction 294
16.2 Electrostatic Forces in Microhandling Processes 296
16.2.1 Centering Electrostatic Microgripper 296
Test Rig for Electrostatic Force Measurement 297
Experimental Results with Centering Electrostatic Microgrippers 298
Handling Tests with Centering Electrostatic Microgrippers 300
16.2.2 Handling Devices Generating Electrostatic Forces Without Electrodes 301
Experimental Results by Modifying Surface Charges 302
16.2.3 Improvement of Process Reliability by Active Neutralization of Mechanical Microgrippers 303
16.3 Mechanical Microgrippers with Integrated Actuators 304
16.3.1 Basic Design of the Mechanical Microgrippers 304
16.3.2 Microgrippers with SMA Actuators 305
16.3.3 Microgrippers with Pneumatic Actuators 308
16.3.4 Microgrippers with Thermal Expansion Actuators 309
16.3.5 Gripper Construction Kit 310
16.4 Pneumatically Driven Auxiliary Microtools 312
16.4.1 Centrifugal Feeder 312
16.4.2 Active Clamping Device 313
Acknowledgements 314
References 314
Chapter 17 Stereophotogrammetry in Microassembly 316
Abstract 316
17.1 Introduction 316
17.2 Photogrammetry 317
17.2.1 Sensor Specification 318
17.2.2 Imaging System 319
17.2.3 Illumination 323
17.2.4 Signalization 324
Signalization by Polygons 324
Signalization by Scattering Circular Marks 324
Signalization by Fluorescent Features 325
17.2.5 Evaluation 327
Camera Model 327
Calibration 328
Epipolar Association 330
Determination of Part Location 331
17.2.6 Integration 331
17.3 Conclusions 332
Acknowledgements 332
References 333
Chapter 18 Use of Hot Melt Adhesives for the Assembly of Microsystems 334
Abstract 334
18.1 Adhesive Bonding as Micro Joining Technology 334
18.2 Properties of Hot Melt Adhesives 335
18.3 Adhesive System Selection Criteria 336
18.3.1 Hot Melt Adhesives 337
18.3.2 Adhesive Systems with Enhanced Thermal Stability 338
18.4 Different Particle Shapes of Micro-Scale Hot Melt Adhesives 338
18.5 Application Methods for Micro-Scale Hot Melt Adhesives 340
18.6 Properties of Hot Melt Adhesive Bonds 346
18.7 Conclusion 349
Acknowledgements 350
References 350
Chapter 19 Design of a Microassembly Process Based on Hot Melt Adhesives 351
Abstract 351
19.1 Introduction 351
19.1.1 Variables Influencing the Assembly Process 352
19.1.2 Assembly Strategies 353
19.1.3 Joining Technologies 353
19.2 Process Design for the Joining with Hot Melt Adhesives 354
19.2.1 Tasks of a Heat Management 354
Heat Introduction 354
Heat Dissipation 354
Gripper 355
Implementation 355
19.2.2 Heat Management 356
Passive Heat Management 356
Active Heat Management 358
19.3 Implementation of a Passive Heat Managment 358
19.3.1 Design of Passive Heat Management 358
Process Design 358
Thermal Design 360
Gripper Design 360
19.3.2 Simulation of Assembly Processes 361
19.4 Implementation of Active Heat Managment 364
19.4.1 Design of Active Heat Management 364
Process Design 364
Thermal Design 365
Gripper Design 365
19.4.2 Implementation and Experiments 366
19.5 Conclusion 368
Acknowledgements 369
References 369
Chapter 20 Design of an Automated Assembly for Micro and Nano Actuators 371
Abstract 371
20.1 Introduction 371
20.1.1 Motivation 371
20.1.2 Components of the Microstep Motors 372
20.2 Assembly Concept for a Linear Microactuator with Levitation System 373
20.3 Assembly Concept for a xy-Micro- and Nanopositioner 375
20.4 Conclusion 377
Acknowledgements 377
Part V Industrial Applications 378
Chapter 21 Bistable Microvalve for Biomedical Usage 379
Abstract 379
21.1 Introduction 379
21.1.1 Implantable Infusion Pump and Requirements for the Valve 379
21.1.2 State of the Art 380
21.2 Concept 381
21.2.1 Basic Design Issues 381
21.2.2 Functionality of Key Components 382
21.3 Transfer of SFB Knowledge 383
21.4 Realization 383
21.4.1 Design and Simulation 383
21.4.2 Fabrication Processes 388
21.5 Combination of the Valve Layers 391
21.6 Pre-Evaluation of the Intermediates 392
21.7 Summary and Prototype 394
21.8 Outlook 395
Acknowledgements 395
References 396
Chapter 22 Microassembly Following the Desktop Factory Concept 397
Abstract 397
22.1 Introduction 397
22.1.1 Concepts for Miniaturization 398
22.1.2 Assumptions Concerning Desktop Factories 398
22.1.3 State of the Art for Desktop Factories 400
22.2 Miniaturized Components 401
22.2.1 Miniaturized Drive Components 401
22.2.2 Miniaturized Sensors 402
22.3 New Prototype of the Parvus Robot 403
22.3.1 New Design Concept 404
22.4 Experimental Verification 406
22.4.1 Challenges of Precision Assembly 406
22.4.2 Product to be Assembled 407
22.4.3 Process Chain of Example Assembly Process 407
22.4.4 The Assembly Setup 408
22.4.5 Experimental Results 410
22.5 Conclusion 411
Acknowledgements 411
References 412
Chapter 23 Automated Optical BGA-Inspection –AUTOBIN 414
Abstract 414
23.1 Introduction 414
23.2 Specification of the Target System 419
23.2.1 The Inspection System 419
23.2.2 Degrees of Freedom of the Handling Device 421
23.2.3 3D-Sensor and Projection System 421
23.2.4 Inspection Procedure 423
Acknowledgements 424
References 425
Chapter 24 Slider with Integrated Microactuator (SLIM) for Second Stage Actuation in Hard Disk Drives 426
Abstract 426
24.1 Introduction: 426
24.2 Concept 427
24.3 Micromagnetics Design and Fabrication 429
24.3.1 Micromagnetics Design 429
24.3.2 Micromagnetics Technology Basics 431
24.3.3 Micromagnetics Fabrication Steps 431
24.4 Micromechanics Design and Fabrication 433
24.4.1 Micromechanics 433
24.5 SLIM System Integration 435
24.5.1 Double Rowbar Stacking 435
24.5.2 Slider Air Bearing Surface 436
24.5.3 Chiplet Mounting and Slider Dicing 437
24.5.4 Head Assembly 438
24.6 Experimental Investigations 439
24.6.1 Component Level Tests 439
24.6.2 Device Level Tests 440
24.7 Conclusion and Outlook 441
Acknowledgements 441
References 442
Index 444

Erscheint lt. Verlag 4.3.2011
Reihe/Serie Microtechnology and MEMS
Microtechnology and MEMS
Zusatzinfo XII, 444 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Maschinenbau
Wirtschaft
Schlagworte magnetic microsystems • mechanical micromaching • Microactuators • microassembly • microelectroplating • micrometrology • micromotors • microrobots • microtribology • miniaturized handling devices • TCAD • Technical CAD • UV-depth lithography
ISBN-10 3-642-12903-X / 364212903X
ISBN-13 978-3-642-12903-2 / 9783642129032
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 58,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99