Production of Platform Chemicals from Sustainable Resources -

Production of Platform Chemicals from Sustainable Resources (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XVI, 475 Seiten
Springer Singapore (Verlag)
978-981-10-4172-3 (ISBN)
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides state-of-the-art reviews, the latest research, prospects and challenges of the production of platform chemicals such as C6 sugars, 5-hydroxymethylfurfural, furfural, gamma-valerolactone, xylitol, 2,5-furandicarboxylic acid, levulinic acid, ethanol and others from sustainable biomass resources using processes that include heterogeneous catalysis, ionic liquids, hydrothermal/solvothermal, electrochemical and fermentation methods. It also discusses the application of these chemicals and their derivatives for synthesizing commodity chemicals via various routes. Intended as a reference resource for researchers, academicians and industrialists in the area of energy, chemical engineering and biomass conversion, it provides a wealth of information essential for assessing the production and application of various biomass-derived platform chemicals using biological, chemical and electrochemical techniques. 



Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, College of Engineering, Nanjing Agricultural University, China.

Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. 

Dr. Xinhua Qi is Professor of Environmental Science, Agro-Environmental Protection Institute (AEPI), Ministry of Agriculture, China 
This book provides state-of-the-art reviews, the latest research, prospects and challenges of the production of platform chemicals such as C6 sugars, 5-hydroxymethylfurfural, furfural, gamma-valerolactone, xylitol, 2,5-furandicarboxylic acid, levulinic acid, ethanol and others from sustainable biomass resources using processes that include heterogeneous catalysis, ionic liquids, hydrothermal/solvothermal, electrochemical and fermentation methods. It also discusses the application of these chemicals and their derivatives for synthesizing commodity chemicals via various routes. Intended as a reference resource for researchers, academicians and industrialists in the area of energy, chemical engineering and biomass conversion, it provides a wealth of information essential for assessing the production and application of various biomass-derived platform chemicals using biological, chemical and electrochemical techniques. 

Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, College of Engineering, Nanjing Agricultural University, China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan.  Dr. Xinhua Qi is Professor of Environmental Science, Agro-Environmental Protection Institute (AEPI), Ministry of Agriculture, China 

Preface 6
Acknowledgments 8
Contents 10
Contributors 12
About the Editors 16
Part I: Production of Sugars 18
Chapter 1: Hydrolysis of Lignocellulosic Biomass to Sugars 19
1.1 Introduction 19
1.1.1 Lignocellulosic Biomass 20
1.1.1.1 Biomass Cell Wall Structure 20
1.1.1.2 Cellulose 20
1.1.1.3 Hemicellulose 21
1.1.1.4 Lignin 21
1.1.2 Conversion Pathways from Lignocellulose Biomass to Sugars 21
1.1.3 Biomass Recalcitrance 22
1.2 Pretreatment 23
1.2.1 Thermochemical Pretreatment 25
1.2.1.1 Dilute Acid (DA) Pretreatment 25
1.2.1.2 Steam Explosion (SE) Pretreatment 29
1.2.1.3 Liquid Hot Water (LHW) Pretreatment 30
1.2.1.4 Ammonia Fiber Expansion (AFEX) Pretreatment 30
1.2.1.5 Ethylenediamine (EDA) Pretreatment 31
1.2.1.6 Aqueous Ammonia (AA) Pretreatment 32
1.2.1.7 Lime Pretreatment 32
1.2.1.8 Ionic Liquid (IL) Pretreatment 32
1.2.1.9 Organosolv Pretreatment 33
1.2.1.10 COSLIF Pretreatment 33
1.2.1.11 Sulfite Pretreatment 34
1.2.1.12 Wet Oxidation Pretreatment 34
1.2.2 Biological Pretreatment 34
1.2.3 Biomass Harvest and Storage 35
1.2.4 Mechanical Comminution 35
1.2.5 Fractionation 36
1.3 Enzymes for Lignocellulose Hydrolysis 36
1.3.1 Classification of Enzymes 37
1.3.2 Enzyme-Cellulose Interaction 39
1.4 Factors Affecting Enzymatic Hydrolysis of Lignocellulose 40
1.4.1 Inhibitors to Enzymatic Hydrolysis 40
1.4.1.1 Lignin Non-productive Adsorption 40
1.4.1.2 Lignin Derived Phenolics 41
1.4.1.3 Oligo-saccharides 42
1.4.1.4 Products Inhibition 43
1.4.2 Additives to Improve Enzymatic Hydrolysis 43
1.4.2.1 Non-hydrolytic Proteins 43
1.4.2.2 Surfactants 44
1.4.2.3 Metal Ions 44
1.4.3 Synergistic Effect 44
1.4.4 High Solids Loading 45
1.5 Hydrolysis Strategy 45
1.5.1 Enzyme Recycling 46
1.5.2 Pelletization 46
1.5.3 Application of Bioconversion from Lignocellulose to Sugars—SSF Process and Fed-Batch for Bioethanol Production 47
1.6 Conclusions and Future Outlook 47
References 48
Part II: Production of Aldehydes 58
Chapter 2: Sustainable Catalytic Strategies for C5-Sugars and Biomass Hemicellulose Conversion Towards Furfural Production 59
2.1 Introduction 60
2.1.1 Mechanistic Considerations of Furfural Formation 60
2.1.2 Industrial Furfural Manufacturing and Their Recent Updates 63
2.2 Emerging Strategies of Furfural Production 65
2.2.1 Homogeneous Catalysis 65
2.2.1.1 Metal Halides 65
Fundamentals and Mechanism 65
Interaction of Metal Halides with Water 67
Furfural from C5-Sugars and Lignocellulosic Feedstocks 68
Monophasic Aqueous and Non-aqueous Systems 68
Biphasic Systems 71
2.2.1.2 Supercritical Fluids 72
Supercritical Carbon Dioxide 73
Furfural Formation from Pentoses and Biomass in Supercritical CO2 74
2.2.1.3 Ionic Liquids 77
Ionic Liquids Used as Acidic Catalysts 78
Ionic Liquids Used as Both Solvents and Acidic Catalysts 79
2.2.2 Heterogeneous Catalysis 80
2.2.2.1 Zeolites (Microporous Catalysts) 81
2.2.2.2 Mesoporous Acid-Catalysts 83
2.2.2.3 Metal Oxides 85
2.3 Conclusions and Future Outlook 87
References 88
Chapter 3: Catalytic Production of 5-Hydroxymethylfurfural from Biomass and Biomass-Derived Sugars 95
3.1 Introduction 96
3.2 Platform Chemical 5-Hydroxymethylfurfural 98
3.3 Catalytic Production of 5-Hydroxymethylfurfural (5-HMF) from Fructose 100
3.3.1 Mineral Acid and Organic Acid as Catalysts 100
3.3.2 Solid Acids as Catalysts 103
3.3.3 Metal-Containing Catalysts 108
3.3.4 Other Catalytic Systems 109
3.4 Catalytic Production of 5-Hydroxymethylfurfural (5-HMF) from Glucose 112
3.4.1 Mineral Acids as Catalysts 112
3.4.2 Solid Acids as Catalysts 112
3.4.3 Metal-Containing Catalysts 115
3.4.4 Other Catalytic Systems 117
3.5 Catalytic Production of 5-Hydroxymethylfurfural (5-HMF) from Polysaccharides 118
3.6 Catalytic Production of 5-Hydroxymethylfurfural (5-HMF) from Biomass Feedstocks 119
3.7 Conclusions and Future Outlook 123
References 124
Chapter 4: 5-(Halomethyl)furfurals from Biomass and Biomass-Derived Sugars 136
4.1 Perspective on the 5-(Halomethyl)furfurals 136
4.2 Historical Reports of 5-(Halomethyl)furfural Preparation 137
4.3 Modern Approaches to 5-(Halomethyl)furfural Preparation 138
4.4 Halomethylfurfural Derivative Chemistry – Furanic Manifold 140
4.5 Halomethylfurfural Derivative Chemistry – Levulinic Manifold 142
4.6 Halomethylfurfural Derivative Chemistry – Advanced Targets 143
4.6.1 Medicinal Chemistry 143
4.6.2 Macrocyclic and Polymer Chemistry 145
4.6.3 Biofuels 146
4.6.4 Miscellaneous Value-Added Products 147
4.7 Conclusions and Future Outlook 148
References 149
Part III: Production of Acids 154
Chapter 5: Levulinic Acid from Biomass: Synthesis and Applications 155
5.1 Introduction 155
5.2 Chemistry and Catalysis Towards the Formation of LA 158
5.2.1 Reaction Mechanism of LA Formation from Sugars 158
5.2.2 Synthesis of LA 160
5.2.2.1 Homogeneous Catalysts 160
5.2.2.2 Heterogeneous Catalysts 162
5.2.2.3 Biphasic Systems 164
5.3 Process Technology 164
5.3.1 Kinetic Studies on LA Synthesis 164
5.3.2 Product Separation and Isolation 166
5.3.3 Commercial Status of LA Production 166
5.4 Potential Applications of LA and Its Derivatives 167
5.4.1 Diphenolic Acid 167
5.4.2 Pyrrolidones 169
5.4.3 Levulinic Ketals 170
5.4.4 ?-Aminolevulinic Acid 171
5.4.5 Succinic Acid 171
5.4.6 ?-Valerolactone 172
5.4.7 Levulinate Esters 172
5.5 Conclusions and Future Outlook 174
References 176
Chapter 6: Catalytic Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF) into 2,5-Furandicarboxylic Acid and Its Derivatives 182
6.1 Introduction 182
6.2 FDCA Production Using Different Methods in the Past 184
6.3 Current Methods for the Oxidation of HMF into FDCA 184
6.3.1 Electrocatalytic Synthesis of FDCA from HMF 185
6.3.2 Biocatalyst Method for the Synthesis of FDCA from HMF 188
6.3.3 Chemical Synthesis of FDCA from HMF by Homogeneous Catalyst 190
6.4 Catalytic Synthesis of FDCA from HMF by Supported Noble Metal Catalysts 191
6.4.1 Synthesis of FDCA from HMF Over Supported Pt Catalysts 191
6.4.2 Synthesis of FDCA from HMF Over Supported Pd Catalysts 194
6.4.3 Synthesis of FDCA from HMF Over Supported Au Catalysts 196
6.4.4 Synthesis of FDCA from HMF Over Supported Ru Catalysts 202
6.4.5 Mechanism of the Oxidation of HMF into FDCA Over Supported Metal Catalysts 203
6.4.6 Catalytic Synthesis of FDCA Over Non-Noble Metal Heterogeneous Catalysts 205
6.5 Catalytic Synthesis of FDCA from Carbohydrates 206
6.6 Catalytic Synthesis of FDCA Derivatives 209
6.7 Conclusions and Future Outlook 210
6.7.1 Conclusions 210
6.7.2 Future Outlook 211
References 212
Chapter 7: Production of Glucaric/Gluconic Acid from Biomass by Chemical Processes Using Heterogeneous Catalysts 218
7.1 Production of Gluconic Acid from Glucose Over Heterogeneous Catalysts 219
7.1.1 Pd and Pt Monometallic Catalysts 219
7.1.2 Pd-M and Pt-M Bimetallic Catalysts 221
7.1.3 Supported Au Catalysts 222
7.2 Production of Glucaric Acid Over Heterogeneous Catalysts 225
7.2.1 Productions of Glucaric Acid Using Solid Catalysts 226
7.2.2 Oxidation of Uronic Acid Using Solid Catalysts 230
7.3 Bifunctional Catalysts for Direct Production of Gluconic Acid 231
7.3.1 Bifunctional Sulfonated Activated-Carbon Supported Platinum Catalyst 232
7.3.2 Conversion of Starch 233
7.3.3 Conversion of Various Polysaccharides 234
7.3.4 Comparison of Pt/AC-SO3H Catalyst to Mixed Catalyst of AC-SO3H with Pt/AC 235
7.3.5 Cellobiose Conversion into Gluconic Acid Over Various Gold Catalysts 236
7.4 Conclusions and Future Outlook 238
References 238
Chapter 8: Production of 1,4-Diacids (Succinic, Fumaric, and Malic) from Biomass 242
8.1 Introduction 242
8.1.1 Platform Chemical Production Using a Biorefinery Concept 242
8.1.2 Current State and Perspectives of C4 Dicarboxylic Acids—Succinic, Malic, and Fumaric Acids 243
8.2 Upstream Processing 245
8.2.1 Microbial Producers 245
8.2.2 Metabolic Engineering Toward Higher Yield 247
8.2.3 Cofactor Engineering of Strains 250
8.3 Fermentation Process Engineering 251
8.3.1 Production of Succinic, Fumaric and Malic Acids Acid from Sugar 253
8.3.2 Alternative Substrates from Lignocellulosic Biomass 254
8.3.3 Cultivation Strategies with High Production Levels 257
8.4 Downstream Processing 258
8.4.1 Main Separation Unit Operations 259
8.4.2 Separation and Purification from the Crude Broth 260
8.4.3 In Situ Product Recovery (ISPR) 263
8.5 Final Remarks 266
8.5.1 Techno-Economics Challenges 266
8.5.2 Conclusions and Future Outlook 267
References 269
Part IV: Production of Alcohols 274
Chapter 9: Production of Sorbitol from Biomass 275
9.1 Introduction 276
9.2 Sorbitol Industrial Importance 278
9.2.1 Sorbitol Market 278
9.2.2 Sorbitol as a Platform Chemical 279
9.3 Sorbitol Production from Biomass 281
9.3.1 Chemical Production of Sorbitol 281
9.3.2 Electrochemical Production of Sorbitol 297
9.3.3 Biotechnological Production of Sorbitol 300
9.3.4 Recovery and Purification of Sorbitol 309
9.4 Conclusions and Future Outlook 311
References 313
Chapter 10: Biotechnological Production of Xylitol from Biomass 320
10.1 Introduction 321
10.2 Xylitol-Producing Microorganisms and Metabolism 322
10.2.1 Metabolism of Xylitol Production 324
10.2.1.1 Bacteria 324
10.2.1.2 Filamentous Fungi 325
10.2.1.3 Yeasts 325
10.2.1.4 Strategies Relative to Microorganisms and Their Metabolism to Increase the Production of Xylitol 326
10.3 Use of Different Biomass for Xylitol Biotechnological Production 329
10.3.1 Pre-treatment of Biomass and Detoxification of Hemicellulosic Hydrolysates to Produce Xylitol 330
10.4 Different Fermentation Strategies for Xylitol Production 336
10.4.1 Batch Fermentation of Xylitol 336
10.4.2 Fed-Batch Fermentation of Xylitol 338
10.4.3 Continuous Fermentation of Xylitol 339
10.5 Methods for Xylitol Separation and Purification 341
10.6 Market and Future Outlook 344
References 345
Chapter 11: Production of Diols from Biomass 352
11.1 Diols from Petroleum 352
11.2 Substrates for the Production of Biomass-Derived Diols 353
11.3 Production of Biomass-Derived C3 Diols 354
11.3.1 Product 1,2-Propanediol from Glycerol and Lactic Acid 354
11.3.2 Product 1,3-Propanediol from Glycerol 357
11.4 Production of Biomass-Derived C4 Diols 362
11.4.1 Product 1,4-Butanediol from Succinic Acid 362
11.4.2 Butanediols from Erythritol and 1,4-Anhydroerythritol 364
11.5 Production of Biomass-Derived C5 Diols 366
11.5.1 Product 1,5-Pentanediol from Furfural and Tetrahydrofurfuryl Alcohol 368
11.5.2 Pentanediols from Furfural and Furfuryl Alcohol via Opening of Furan Ring 370
11.5.3 Product 1,4-Pentanediol from Levulinic Acid 371
11.6 Production of Biomass-Derived C6 Diols 372
11.6.1 Product 1,6-Hexanediol from Tetrahydropyran-2-Methanol 373
11.6.2 Product 1,6-Hexanediol from 5-Hydroxymethylfurfural and Its Derivatives 374
11.6.3 Products Hexanediols from Sorbitol 375
11.7 Conclusions and Future Outlook 376
References 376
Chapter 12: Production of Ethanol from Lignocellulosic Biomass 383
12.1 Introduction 384
12.1.1 Lignocellulosic Bioethanol: A Process Overview 385
12.2 Novel Promising Lignocellulosic Feedstocks 386
12.3 Important Aspects and Limitations of Biomass Processing 388
12.3.1 Pretreatment and Hydrolysis of Lignocellulosic Biomass 388
12.3.1.1 Recent Development in Pretreatment Technologies 391
Physical Pretreatment 393
Chemical Pretreatment 393
Physicochemical Pretreatment 394
Biological Pretreatment 395
12.3.2 Inhibitory Compounds and Residual Lignin 396
12.3.2.1 Delignification of Pretreated Materials 396
12.3.2.2 Inhibitors Removal and Detoxification of Pretreated Materials 398
12.4 Process Integration 399
12.4.1 Separate Hydrolysis and Fermentation (SHF) 400
12.4.2 Simultaneous Saccharification and Fermentation (SSF) 400
12.4.3 Consolidated Bioprocessing (CBP) 401
12.4.4 Operational Strategies 401
12.5 Fermenting Microorganisms for Lignocellulosic Ethanol Production 402
12.5.1 Hemicellulosic Sugars Fermentation 404
12.5.2 Increased Tolerance to Inhibitors 405
12.5.3 Ethanol Tolerance 406
12.5.4 Thermotolerance 406
12.5.5 Osmotolerance 407
12.6 Conclusions and Future Outlook 408
References 409
Part V: Production of Lactones and Amino Acids 419
Chapter 13: Production of ?-Valerolactone from Biomass 420
13.1 Introduction 420
13.2 Mechanism Studies on the Production of GVL 424
13.3 Production of GVL Using Homogeneous Catalysts 426
13.4 Production of GVL Using Heterogeneous Catalysts 429
13.4.1 Supported Noble-Metal Catalysts 429
13.5 Non-Noble Metal Catalysts 431
13.6 Different Hydrogen Sources Utilized for the Hydrogenation of LA 431
13.6.1 Formic Acid as Hydrogen Source 431
13.6.2 Hydrogen 434
13.6.3 Meerwein-Ponndorf-Verley Reaction 435
13.7 Conclusions and Future Outlook 436
References 437
Chapter 14: Production of Amino Acids (L-Glutamic Acid and L-Lysine) from Biomass 444
14.1 Introduction 445
14.2 Metabolic Engineering of C. glutamicum for Improving L-Lysine Production 445
14.3 Expanding the Carbon Availability of C. glutamicum for L-Glutamic Acid and L-Lysine Production 448
14.3.1 Utilization of Edible Biomass 449
14.3.2 Utilization of Inedible Biomass and Derived Sugars 450
14.4 L-Glutamic Acid and L-Lysine as Platform Chemicals 452
14.4.1 L-Lysine-Derived Chemicals 452
14.4.2 L-Glutamic Acid-Derived Chemicals 454
14.5 Conclusions and Future Outlook 456
References 457
Index 463

Erscheint lt. Verlag 14.6.2017
Reihe/Serie Biofuels and Biorefineries
Biofuels and Biorefineries
Zusatzinfo XVI, 475 p. 139 illus., 41 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Biologie Biochemie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Weitere Fachgebiete Land- / Forstwirtschaft / Fischerei
Schlagworte biomass • catalysis • Platform chemicals • Sugars • Sustainable energy
ISBN-10 981-10-4172-5 / 9811041725
ISBN-13 978-981-10-4172-3 / 9789811041723
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99