Fiber Optic Measurement Techniques
Academic Press Inc (Verlag)
978-0-12-373865-3 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Fiber Optic Measurement Techniques is an indispensable collection of key optical measurement techniques essential for developing and characterizing today’s photonic devices and fiber optic systems. The book gives comprehensive and systematic descriptions of various fiber optic measurement methods with the emphasis on the understanding of optoelectronic signal processing methodologies, helping the reader to weigh up the pros and cons of each technique and establish their suitability for the task at hand.
Carefully balancing descriptions of principle, operations and optoelectronic circuit implementation, this indispensable resource will enable the engineer to:
Understand the implications of various measurement results and system performance qualifications
Characterize modern optical systems and devices
Select optical devices and subsystems in optical network design and implementation
Design innovative instrumentations for fiber optic systems
This book brings together in one volume the fundamental principles with the latest techniques, making it a complete resource for the optical and communications engineer developing future optical devices and fiber optic systems.
"Optical fiber communication systems and networks constitute the core of the telecom infrastructure of the information society worldwide. Accurate knowledge of the properties of the contituent components, and of the performance of the subsystems and systems must be obtained in order to ensure reliable transmission, distribution, and delivery of information. This book is an authoritative and comprehensive treatment of fiber-optic measurement techniques, including not only fundamental principles and methodologies but also various instrumentations and practical implementations. It is an excellent up-to-date resource and reference for the academic and industrial researcher as well as the field engineer in manufacturing and network operations." –Dr. Tingye Li, AT&T Labs (retired)Rongqing Hui received his PhD in Electrical Engineering from Politecnico di Torino, Italy in 1993. He is currently a tenured professor in the department of Electrical Engineering and Computer Science at the University of Kansas. He has published more than 90 refereed technical papers in the area of fiber-optic communications and holds 13 patents. Dr. Hui currently serves as an Associate Editor of IEEE Transactions on Communications.Maurice O'Sullivan has worked for Nortel for a score of years, at first in the optical cable business, developing factory-tailored metrology for optical fiber, but, in the main, in the optical transmission business developing, modeling and verifying physical layer designs & performance of Nortel's line and highest rate transmission product including OC-192, MOR, MOR+, LH1600G, eDCO and eDC40G. He holds a Ph.D. in physics (high resolution spectroscopy) from the University of Toronto, is a Nortel Fellow and has been granted more than 30 patents.
Dr. Hui is a professor of Electrical Engineering and Computer Science at the University of Kansas. His research interests are in lightwave communication systems and subsystems, photonic devices, optical instrumentation and photonic sensors. Prior to joining the faculty of the University of Kansas in 1997 he taught undergraduate and graduate courses in optical communications, microelectronic circuits, and semiconductor materials & devices for more than 15 years. Dr. Hui was a member of the scientific staff at Bell-Northern Research and Nortel in Ottawa, Canada, where he was involved in the research and development of high-speed optical transport networks. He was a NSF Program Director for the photonic devices program from 2006 to 2008. He served as an associate editor for IEEE Transactions on Communications from 2001 to 2007 and an associate editor of IEEE Journal of Quantum Electronics from 2006 to 2013. Maurice O’Sullivan has engineered the physical layer of optical transmission for more than 30 years, at first in the optical cable business, developing factory-tailored metrology for optical fiber, but, mainly, in the optical transmission business developing, modeling and verifying physical layer designs and performance of Nortel's (now Ciena’s) line and highest rate transmission product including the first commercial 10 Gb/s system, several commercial terrestrial line systems, the first commercial DSP assisted electric field modulation transceiver with complete electronic compensation for optical dispersion and the first commercial coherent 40Gb/s and 100Gb/s transceivers. Now with Ciena, Maurice is engaged in the design of successive generations of flexible high capacity multi-rate coherent transceivers including 50G/100G/200G, 100G/…/400G, and 200G/…/800G products. Maurice is a Ciena Fellow with more than 45 patents and holds a Ph.D. in physics (high resolution spectroscopy) from the University of Toronto.
Introduction; Fundamentals of Optical Devices; Basic Instrumentation for Optical Measurement; Characterization of Optical Devices; Optical Fiber Measurement; Optical System Performance Measurements
Erscheint lt. Verlag | 21.1.2009 |
---|---|
Verlagsort | San Diego |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 1010 g |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
ISBN-10 | 0-12-373865-2 / 0123738652 |
ISBN-13 | 978-0-12-373865-3 / 9780123738653 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich