Computer Science in Sport
Springer Berlin (Verlag)
978-3-662-68312-5 (ISBN)
This textbook aims to live up to the now broad diversity of computer science in sport by having more than 30 authors report from their special field and concisely summarise the latest findings. The book is divided into four main sections: data sets, modelling, simulation and data analysis. In addition to background information on programming languages and visualisation, the textbook is framed by history and an outlook.
Students with a connection to sports science are given a comprehensive insight into computer science in sport, supported by a didactically sophisticated concept that makes it easy to convey the learning content. Numerous questions for self-testing underpin the learning effect and ensure optimal exam preparation. For advanced students, the in-depth discussion of time series data mining, artificial neural networks, convolution kernels, transfer learning and random forests offers additional value.
lt;b>Prof. Dr Daniel Memmert is the executive director and professor at the Institute of Exercise Training and Sport Informatics at the German Sport University Cologne. He is the editor and author of numerous textbooks with a focus on exercise science, sports psychology and informatics. His institute organises two certificate programmes (Game Analysis Team Cologne / Sports Director in Youth and Amateur Soccer) as well as the first international Master's degree programme "Match Analysis".
I HISTORY.- History.- II DATA.- Artificial data.- Text data.- Video data.- Event data.- Position data.- Online data.- III MODELING.- Modeling.- Predictive models.- Physiological modeling.- IV SIMULATION.- Simulation.- Metabolic simulation.- Simulation of physiological adaptation processes.- V PROGRAMMING LANGUAGES.- An introduction to the programming language R for beginners.- Phyton.- VI DATA ANALYSIS.- Logistic Regression.- Time Series Data Mining.- Process Mining.- Networks Centrality.- Artificial Neural Networks.- Deep Neural Networks.- Convolutional Neural Networks.- Transfer Learning.- Random Forest.- Statistical learning for the modeling of soccer matches.- Open-Set Recognition.- VII VISUALIZATION.- Visualization - Basics and Concepts.- VIII OUTLOOK.- Outlook.
Erscheinungsdatum | 02.05.2024 |
---|---|
Zusatzinfo | XVII, 249 p. 11 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Original-Titel | Sportinformatik |
Maße | 155 x 235 mm |
Themenwelt | Sachbuch/Ratgeber ► Sport |
Mathematik / Informatik ► Informatik ► Datenbanken | |
Medizin / Pharmazie | |
Technik | |
Schlagworte | Artifical Intelligence (AI) • Artificial Neural Networks • artificical data sets • Big Data • convolution kernel • Data Visualization • Deep learning • deep neural networks • Logistic Regression • Machine Learning (ML) • Open-set Recognition • perofmance indicators • Physiological Modelling • position data, event data, video data, text data • predictive models • Programming Languages • Python • random forests • Simulation • time series data mining |
ISBN-10 | 3-662-68312-1 / 3662683121 |
ISBN-13 | 978-3-662-68312-5 / 9783662683125 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich