Medical Imaging and Computer-Aided Diagnosis -

Medical Imaging and Computer-Aided Diagnosis (eBook)

Proceeding of 2020 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2020)

Ruidan Su, Han Liu (Herausgeber)

eBook Download: PDF
2020 | 1st ed. 2020
X, 244 Seiten
Springer Singapore (Verlag)
978-981-15-5199-4 (ISBN)
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers virtually all aspects of image formation in medical imaging, including systems based on ionizing radiation (x-rays, gamma rays) and non-ionizing techniques (ultrasound, optical, thermal, magnetic resonance, and magnetic particle imaging) alike. In addition, it discusses the development and application of computer-aided detection and diagnosis (CAD) systems in medical imaging.

Given its coverage, the book provides both a forum and valuable resource for researchers involved in image formation, experimental methods, image performance, segmentation, pattern recognition, feature extraction, classifier design, machine learning / deep learning, radiomics, CAD workstation design, human-computer interaction, databases, and performance evaluation. 



Dr. Ruidan Su received his M.Sc. in Software Engineering from Northeastern University, China, in 2010, and his Ph.D. degree in Computer Application Technology from Northeastern University, China, in 2014. He is currently an Assistance Professor of Shanghai Advanced Research Institute, Chinese Academy of Sciences. His field of science is digital image processing and artificial intelligence, video system processing, machine learning, computational intelligence, software engineering, data analytics, system optimization, and multi-population genetic algorithm.

Dr. Ruidan Su is an IEEE Senior Member. He has published 22 papers in refereed journals and conference proceedings. He was the Founder & Editor-in-Chief of Journal of Computational Intelligence and Electronic Systems published by American Scientific Publisher from 2012 to 2016. He was an Associate Editor for the Journal of Granular Computing Published by Springer, an Associate Editor for the Journal of Intelligent & Fuzzy Systems published by IOS Press, and a Review Board Member for Applied Intelligence.

Dr. Ruidan Su was the Guest Editor for Multimedia Tools and Applications by Springer for Special Issue on Practical Augmented Reality (AR) Technology and its Applications, a Guest Editor for the Journal of International Journal of Hydrogen Energy, and a Proceeding Editor for the Proceeding of 2018 & 2019 International Conference on Image and Video Processing, and Artificial Intelligence (IVPAI 2018 & 2019, published by SPIE). He was a Conference Chair for 2018 & 2019 International Conference on Image and Video Processing, and Artificial Intelligence, a conference Chair for 2018 3rd International Conference on Computer, Communication and Computational Sciences, and a Conference Program Committee Member for 18th International Conference on Machine Learning and Cybernetics

Dr. Ruidan Su has been a Reviewer for several leading journals, such as Information Sciences, IEEE Transactions on Cybernetics, IEEE Access, Applied Intelligence, International Journal of Pattern Recognition and Artificial Intelligence, Knowledge and Information Systems, Multimedia Tools and Application, The Journal of Supercomputing, Concurrency and Computation: Practice and Experience, and Electronic Commerce Research. 

Han Liu is currently a Research Associate in Data Science in the School of Computer Science and Informatics at Cardiff University. He has previously been a Research Associate in Computational Intelligence in the School of Computing at the University of Portsmouth. He received a B.Sc. in Computing from the University of Portsmouth in 2011, an M.Sc. in Software Engineering from the University of Southampton in 2012, and a Ph.D. in Machine Learning from the University of Portsmouth in 2015. His research interests are in artificial intelligence in general and machine learning in particular. His other related areas include sentiment analysis, pattern recognition, intelligent systems, big data, granular computing, and computational intelligence.

He has published two research monographs in Springer and over 60 papers in the areas such as data mining, machine learning, and intelligent systems. One of his papers was identified as a key scientific article contributing to scientific and engineering research excellence by the selection team at Advances in Engineering and the selection rate is less than 0.1%. He also has three papers selected, respectively, as finalists of Lotfi Zadeh Best Paper Award in the 16th, 17th, and 18th International Conference on Machine Learning and Cybernetics (ICMLC 2017, 2018 & 2019).


This book covers virtually all aspects of image formation in medical imaging, including systems based on ionizing radiation (x-rays, gamma rays) and non-ionizing techniques (ultrasound, optical, thermal, magnetic resonance, and magnetic particle imaging) alike. In addition, it discusses the development and application of computer-aided detection and diagnosis (CAD) systems in medical imaging. Given its coverage, the book provides both a forum and valuable resource for researchers involved in image formation, experimental methods, image performance, segmentation, pattern recognition, feature extraction, classifier design, machine learning / deep learning, radiomics, CAD workstation design, human computer interaction, databases, and performance evaluation. 
Erscheint lt. Verlag 2.7.2020
Reihe/Serie Lecture Notes in Electrical Engineering
Lecture Notes in Electrical Engineering
Zusatzinfo X, 244 p. 107 illus., 76 illus. in color.
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie Gesundheitsfachberufe
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Radiologie
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Studium 2. Studienabschnitt (Klinik) Anamnese / Körperliche Untersuchung
Technik Elektrotechnik / Energietechnik
Technik Medizintechnik
Schlagworte Computer Aided Diagnosis • diagnostic radiology • image reconstruction • machine learning • Optical and Photo-acoustic Imaging • Shape representation and analysis
ISBN-10 981-15-5199-5 / 9811551995
ISBN-13 978-981-15-5199-4 / 9789811551994
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 29,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
43,19
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
32,39