Mathematical Foundation of Railroad Vehicle Systems - Ahmed A Shabana

Mathematical Foundation of Railroad Vehicle Systems

Geometry and Mechanics

(Autor)

Buch | Hardcover
450 Seiten
2021
Wiley (Verlag)
978-1-119-68904-1 (ISBN)
145,47 inkl. MwSt
Mathematical Foundation of Railroad Vehicle Systems: Geometry and Mechanics develops the mathematical foundation of railroad vehicle systems with emphasis placed on the integration of geometry and mechanics. This geometry/mechanics integration is necessary for developing a sound mathematical foundation, accurate formulation of the nonlinear dynamic equations, and general computational algorithms that can be effectively used in the virtual prototyping, analysis, design, and performance evaluation of railroad vehicle systems. Mathematical Foundation of Railroad Vehicle Systems: Geometry and Mechanics introduces basic concepts, formulations and computational algorithms used in railroad vehicle system dynamics. Shows how new mechanics-based approaches such as the absolute nodal coordinate formulation (ANCF) can be used to achieve the geometry/mechanics integration. It also discusses new problems and issues to be addressed in this area, and describes how geometry and mechanics approaches can be used in studying derailments.

AHMED A. SHABANA is University Distinguished Professor and the Richard and Loan Hill Professor of Engineering at the University of Illinois at Chicago, United States. He is a Fellow of the American Society of Mechanical Engineers (ASME), a Fellow of the Society of Automotive Engineering (SAE International), and the author of texts in the areas of dynamics and vibration.

Preface

Chapter 1 Introduction
1.1 Differential Geometry
1.2 Integration of Geometry and Mechanics
1.3 Hunting Oscillations
1.4 Wheel and Track Geometries
1.5 Centrifugal Forces and Balance Speed
1.6 Contact Formulations
1.7 Computational MBS Approaches
1.8 Derailment Criteria
1.9 High-Speed Rail Systems
1.10 Linear Algebra and Book Notations

Chapter 2 Differential Geometry
2.1 Curve Geometry
2.2 Surface Geometry
2.3 Application to Railroad Geometry
2.4 Surface Tangent Plane and Normal Vector
2.5 Surface Fundamental Forms
2.6 Normal Curvature
2.7 Principal Curvatures and Directions
2.8 Numerical Representation of the Profile Geometry
2.9 Numerical Representation of the Surface Geometry

Chapter 3 Motion and Geometry Description
3.1 Rigid Body Kinematics
3.2 Direction Cosines and Simple Rotations
3.3 Euler Angles
3.4 Euler Parameters
3.5 Velocity and Acceleration Equations
3.6 Generalized Coordinates
3.7 Kinematic Singularities
3.8 Euler Angles and Track Geometry
3.9 Angle Representation of the Curve Geometry
3.10 Euler Angles as Field Variables
3.11 Euler-Angle Description of the Track Geometry
3.12 Geometric Motion Constraints
3.13 Trajectory Coordinates

Chapter 4 Railroad Geometry
4.1 Wheel Surface Geometry
4.2 Wheel Curvatures and Global Vectors
4.3 Semi-Analytical Approach for Rail Geometry
4.4 ANCF Rail Geometry
4.5 ANCF Interpolation of the Rail Geometry
4.6 ANCF Computation of the Tangents and Normal
4.7 Track Geometry Equations
4.8 Numerical Representation of the Track Geometry
4.9 Track Data
4.10 Irregularities and Measured Track Data
4.11 Comparison of the Semi-Analytical and ANCF Approaches

Chapter 5 Contact Problem
5.1 Wheel/Rail Contact Mechanism
5.2 Constraint Contact Formulation (CCF)
5.3 Elastic Contact Formulation (ECF)
5.4 Normal Contact Forces
5.5 Contact Surface Geometry
5.6 Contact Ellipse and Normal Contact Force
5.7 Creepage Definitions
5.8 Creep Force Formulations
5.9 Creep Force and Wheel/Rail Contact Formulations
5.10 Maglev Forces

Chapter 6 Equations of Motion
6.1 Newtonian and Lagrangian Approaches
6.2 Virtual Work Principle and Constrained Dynamics
6.3 Summary of the Rigid Body Kinematics
6.4 Inertia Forces
6.5 Applied Forces
6.6 Newton-Euler Equations
6.7 Augmented Formulation and Embedding Technique
6.8 Wheel/Rail Constraint Contact Forces
6.9 Wheel/Rail Elastic Contact Forces
6.10 Other Force Elements
6.11 Trajectory Coordinates
6.12 Longitudinal Train Dynamics (LTD)
6.13 Hunting Stability
6.14 MBS Modeling of Electro-Mechanical Systems

Chapter 7 Pantograph/Catenary Systems
7.1 Pantograph/Catenary Design
7.2 ANCF Catenary Kinematic Equations
7.3 Catenary Inertia and Elastic Forces
7.4 Catenary Equations of Motion
7.5 Pantograph/Catenary Contact Frame
7.6 Constraint Contact Formulation (CCF)
7.7 Elastic Contact Formulation (ECF)
7.8 Pantograph/Catenary Equations and MBS Algorithm
7.9 Pantograph/Catenary Contact Force Control
7.10 Aerodynamic Forces
7.11 Pantograph/Catenary Wear

Appendix A Contact Equations and elliptical integrals
A.1 Derivation of the Contact Equations
A.2 Elliptical Integrals

References

Index

Erscheinungsdatum
Verlagsort Hoboken
Sprache englisch
Maße 170 x 244 mm
Gewicht 806 g
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 1-119-68904-X / 111968904X
ISBN-13 978-1-119-68904-1 / 9781119689041
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Mario Fontana …

Buch | Hardcover (2022)
Springer Vieweg (Verlag)
149,99
Bemessung von Stahlbauten nach Eurocode mit zahlreichen Beispielen

von Jörg Laumann; Christian Wolf

Buch | Hardcover (2024)
Springer Vieweg (Verlag)
59,99