Racing for the Surface -

Racing for the Surface (eBook)

Antimicrobial and Interface Tissue Engineering
eBook Download: PDF
2020 | 1. Auflage
808 Seiten
Springer-Verlag
978-3-030-34471-9 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers the key basics of tissue engineering as well as the latest advances in the integration of both antimicrobial and osteoinductive properties. Topics covered include osteoconductive and osteoinductive biomaterials (calcium phosphate, bone morphogenetic protein, peptides, antibodies, bioactive glasses, nanomaterials, etc.) and scaffolds. Research integrating both antimicrobial/biofilm-inhibiting and osteoinductive/osteoconductive properties and their co-delivery is detailed and their roles in clinical success are discussed. Combined with its companion volume, Racing for the Surface: Antimicrobial and Interface Tissue Engineering, this book bridges the gap between infection and tissue engineering, and is an ideal book for academic researchers, clinicians, industrial engineers and scientists, governmental representatives in national laboratories, and advanced undergraduate students and post-doctoral fellows who are interested in tissue engineering and regeneration, infection, and biomaterials and devices.




Bingyun Li is a full Professor with tenure at School of Medicine, West Virginia University. He is a Fellow of the American Institute for Medical and Biological Engineering and an Associate Editor of the Frontiers in Microbiology journal. Professor Li is a member of the Society for Biomaterials (SFB), Orthopedic Research Society (ORS), American Society for Microbiology (ASM), Materials Research Society (MRS), American Chemical Society (ACS), International Chinese Musculoskeletal Research Society (ICMRS), and Chinese Association for Biomaterials (CAB). Professor Li has served as topic chair of Infection and Inflammation of the ORS Program Committee, vice-chair and chair of Orthopedic Biomaterials Special Interest Group of SFB, Chief Editor of ICMRS Newsletter, and inaugural treasurer of CAB. Professor Li's research focuses on advanced materials, nanomedicine, infection, immunology, and drug delivery. He has published two edited books, 102 articles, 133 abstracts, and 14 provisional/full patents. Professor Li has given 56 invited and keynote talks and has received multiple prestigious awards including the Berton Rahn Prize from AO Foundation, the Pfizer Best Scientific Paper Award from Asia Pacific Orthopedic Association, and the Collaborative Exchange Award from Orthopedic Research Society.

Thomas Webster is the Chemical Engineering Department Char and Art Zafiropoulo Endowed Chair at Northeastern University. Prof. Webster has graduated 144 students. His lab group published 9 textbooks, 48 book chapters, 403 articles, and 32 provisional/full patents. Prof. Webster has received numerous honors: 2012, Fellow, American Institute for Medical and Biological Engineering; 2013, Fellow, Biomedical Engineering Society; 2015, Wenzhou 580 Award; 2015, Zheijang 1000 Talent Program; 2016, IMRC Chinese Academy of Science Lee-Hsun Lecture Award; 2016, Fellow, Biomaterials Science and Engineering; and 2016, Acta Biomaterialia Silver Award. He also frequently appears on the BBC, NBC, ABC, Fox, National Geographic, Discovery Channel and many other news outlets talking about science.

Malcolm Xing is a professor of University of Manitoba. His research focuses on smart biomaterials for tissue engineering, nanomedicine, wearable biosensor, implantable bio-robot and 3D/4D bioprinting. He has obtained awards such as National Science & Engineering Research Council Discovery Accelerator Supplement Award, Canada Foundation for Innovation - Innovation Fund, CBA-BA Young Investigator Award in ACS 2017 and Dr. J.A. Moorhouse Fellowship of the Diabetes Foundation of Manitoba.  Dr. Xing was the invited speaker of 2019 Society for Biomaterials Annual Conference and Keynote speaker of 2019 Canada Biomaterials Society (CBS) Conference, and the conference chair of CBS2017. His research has been covered in media including Time, Fortune, Discovery, Science, ACS headline news, RSC, CTV, CBC, etc.

Foreword 5
Preface 7
Half a Century and Billions of Dollars Later, Is the Charnley Hip Implant Still the Best We Have? 7
Contents 9
Part I: Innovative Antimicrobial and Osteoinductive Therapeutics 12
Advances in Antimicrobial and Osteoinductive Biomaterials 13
Introduction 14
Current Challenges 15
The Fundamental Basics of Antimicrobial and Osteoinductive Properties 21
Antimicrobial Biomaterials 22
Elements 24
Polymers and Miscellaneous 26
Osteoinductive Biomaterials 28
Dual Functional Biomaterials 30
Future Perspective and Remarks 32
References 34
Recent Advances in Controlled Release Technologies for the Co-delivery of Antimicrobial and Osteoconductive Therapeutics 45
Introduction 47
Nanoparticles, Microparticles, and Powders as a Means of Osteoconductive and Antimicrobial Therapy 50
Bone Healing Particles That Treat or Prevent Infections Based on Silver 51
Bone Healing Particles That Treat or Prevent Infections Based on Antibiotics 53
Modifying Medical Implants to Have Combinatorial Osteoconductive and Antimicrobial Properties 55
Implant Coatings Using Metallic Antimicrobial Strategies 56
Coatings Without Growth Factors 56
Coatings with Growth Factors 64
Implant Coatings Containing Antibiotics 65
Direct Surface Modification with Antibiotics 65
Multi-layer Implant Coatings 66
Tissue Engineering Scaffolds 69
Bone Cements 75
Conclusion 77
References 77
Biofilm-inhibiting and Osseointegration-promoting Orthopedic Implants with Novel Nanocoatings 83
Introduction 84
Existing Problems with Metal-Based Orthopedic Implants 84
Existing Strategies Modifying Implants to Prevent Biofilm Formation and Promote Osteoconductivity 85
Nanocoating with Tailored Functional Groups for Biomedical Applications 86
Experimental Setup and Methods 88
Fabrication of Nanocoatings with Tailored Coating Chemistry and Surface Properties 88
Characterization of Coatings and Surfaces 89
Evaluation of Durability of Bioactivity and Nanocoating Integrity 89
Assessment of Nanocoatings with In Vitro and In Vivo Models 90
Study of Fibrinogen and Fibronectin’s Roles in Mediating Anti-biofilm Activity of Nanocoatings 90
Results and Discussion 91
Conclusions 96
References 97
Three-Dimensional (3D) and Drug-Eluting Nanofiber Coating for Prosthetic Implants 100
Background 101
Introduction 101
Complications of Total Joint Arthroplasty: Osseointegration Insufficiency and Infection 102
Recent Implant Coating Developments: Advantages and Disadvantages 103
Hydroxyapatite (HA) Coating 104
Hydrogel Coating 105
Layer-by-Layer (LBL) Coatings 106
Immobilization of Drugs on the Implant Surface 107
Other Coatings 108
Future Direction 108
Electrospun Nanofibers (NFs) Coating to Enhance Osseointegration 108
Characters and Current Researches in Electrospinning 108
Limitations (Dense and Compact Structure) 109
Current 3D NFs Fabrication Techniques 109
The Technique of 3D NFs Collector (Mechanism, Device, Physiochemical Properties of NFs, and Cellular Behavior) 111
Nanofibers Coating as Drug-Eluting Device to Enhance Osteointegration and Treat Periprosthetic Infection (PJI) 114
Coaxial Nanofibrous Coating as a Controlled Drug-Eluting Device (Current Technology Development Status) 114
Sustained Strontium Release from Coaxial NFs to Enhance Osseointegration 115
Sustained Release of Doxycycline from Coaxial NFs to Prevent and Treat PJI (In Vitro and In Vivo Study) 116
Summary and Conclusions 117
References 117
Cationic Antimicrobial Coatings with Osteoinductive Properties 124
Introduction 125
Antimicrobial and Osteoinductive Mechanisms of Cationic Coatings 126
Antibacterial Mechanisms of Positively Charged Coatings 126
Polycations 126
Metal Cations 126
Osteoinduction and Signaling Pathways 127
Angiogenesis and Osteogenesis 130
Positively Charged Polymer Coatings with Antimicrobial and Osteoinductive Properties 131
Cationic Copper with Antimicrobial and Osteoinductive Activities 133
Final Comment and Future Directions 135
References 135
Peptide-functionalized Biomaterials with Osteoinductive or Anti-biofilm Activity 138
Introduction 138
Peptide Design 140
Peptides Derived from Proteins 140
Library Screening Approaches 143
Chemical Methods 145
Peptide Synthesis 145
Peptide Functionalization 148
Osteoinductive Peptides 149
OGP Peptides 150
Peptides Derived from BMP-2 152
Peptides Derived from BMP-7 153
Peptides Derived from BMP-4 and BMP-9 154
Peptides Derived from Parathyroid Hormone 155
Other Peptides 155
Use of Osteoinductive Peptides Clinically 156
Anti-biofilm Peptides 157
LL-37, P10, AS10, and hep20 Peptides (Naturally Derived) 160
IDR-1018 and 3002 Peptides (from Peptide Library Screenings) 161
DJK-5, DJK-6, and D-RR4 Peptides (d-Enantiomeric Peptides) 161
BMAP28, Tachyplesin III, WRL3, and DRGN-1 Peptides (Evaluation In Vivo) 163
Immobilization of Antimicrobial Peptides 163
Use of Anti-biofilm and Antimicrobial Peptides Clinically 165
Conclusion/Summary and Future Perspectives 165
References 167
Construction of Bio-functionalized ZnO Coatings on Titanium Implants with Both Self-Antibacterial and Osteoinductive Properties 178
Introduction 178
Fabrication and Characteristics of ZnO-Decorated Coatings on Ti Implants 179
Antibacterial Behavior Investigation 183
Osteoinductive Behavior Investigation 186
Conclusion 189
Future Directions 190
References 191
Gasotransmitters: Antimicrobial Properties and Impact on Cell Growth for Tissue Engineering 192
Introduction 192
Need for Antimicrobial Engineered Grafts 193
Gasotransmitters in Mammalian Cells 194
Nitric Oxide 194
Hydrogen Sulfide 195
Carbon Monoxide 195
Gasotransmitters in Bacterial Cells 196
Role in Protecting Bacteria 196
Gasotransmitter Dose 198
Gasotransmitter Selectivity 199
Gasotransmitter Inclusion into Scaffolds 202
Gasotransmitters for Bone Applications 204
Gasotransmitters for Tissue Vascularization 207
Conclusions and Future Challenges 208
References 209
Carbon Nanotubes: Their Antimicrobial Properties and Applications in Bone Tissue Regeneration 215
Introduction 216
Brief History of Antimicrobial Studies of CNTs 218
Antimicrobial Properties of SWCNTs 218
Antimicrobial Properties of MWCNTs 221
Toxicity of SWCNTs and MWCNTs Against Eukaryotic Cells 222
Antimicrobial Mechanisms of CNTs 223
Perspectives and Summary 225
References 226
Part II: Interface Tissue Engineering and Advanced Material for Scaffolds 231
Fracture Healing and Progress Towards Successful Repair 232
Introduction 232
Origin of Bone 233
Bone Healing: An Interplay Between Immunological and Mechanical Factors 235
Primary Fracture Healing 236
Secondary Fracture Healing 237
Current Barriers to Successful Bone Healing 240
Patient-Related Risk Factors 240
Fracture-Related Risk Factors 242
Trauma-Related Risk Factors 243
Conclusion 244
References 245
Animal Models for Bone Tissue Engineering and Osteoinductive Biomaterial Research 251
Introduction 252
Animal Bone Defect Models 252
Calvarial Bone Defect Models 253
CSD in Calvarial Bone Defect Models 253
Comments on the Models 257
Segmental Defect Models of Weight-Bearing Long Bone 257
Fixation Used in the Segmental Defect Model 258
CSD in the Segmental Defect Models of Weight-Bearing Long Bone 258
Comments on the Models 263
Segmental Defect Models of Non-weight Bearing Long Bone 263
CSD in Segmental Defect Models of Non-weight Bearing Long Bone 263
Comments on the Models 264
Metaphyseal Defect Model 265
CSD in Metaphyseal Defect Models 265
Comment on the Models 265
Vertebral Body Defect Models 270
Small Animal Vertebral Body Defect Models 273
Large Animal Vertebral Body Defect Models 273
Other Bone Defect Models 276
Femoral Wedge Bone Defect Model 276
Multiple-Defect Model in Canine Femur and Tibia 276
Nonunion Models 276
Selection of Bone Defect Model 279
Age and Sex of Animal 279
Comparison between Different Animal Species 279
Rodents 280
Rabbit 280
Canine 281
Goat and Sheep 281
Swine 282
Research Related Criteria 283
Bone Defect Models Simulating Clinical Scenarios 283
Actual Situation of Bone Defect in Clinical Settings 283
Fracture Model and Nonunion Model 284
Fracture-Bone Defect Models 284
Challenges and Future Prospects 285
Summary 285
References 286
Biofabrication in Tissue Engineering 295
Introduction 295
Biofabrication Strategies 296
Inkjet Bioprinting 296
Laser-assisted Bioprinting 297
Extrusion Bioprinting 298
Melt Electrowriting (MEW) 299
Criteria for Biomaterial Design and Selection 300
Biocompatibility 300
Material Properties 301
Structural Properties 301
Degradation 302
Printability 303
Commonly Used Biofabrication Materials 303
Naturally Derived Biomaterials 304
Synthetic Biomaterials 305
Future Perspectives 306
Multi-scale Biofabrication 306
Vascularization 310
Biomaterial Development 310
References 312
Additive Manufacturing of Bioscaffolds for Bone Regeneration 319
Introduction 319
Bone Structure and Properties 320
Bone Modeling and Remodeling 321
Additive Manufacturing (AM) in Bone Regeneration 322
Materials 325
Bio-ceramics 325
Calcium Phosphate 325
Bioglasses 326
Metals 327
Traditional Metals 327
Biodegradable Metals 327
Polymers 329
Composites 329
Fabrication Methods in Additive Manufacturing 330
Stereolithography (SLA) 330
Selective Laser Sintering (SLS) and Selective Laser Melting (SLM) 332
3D Printing 333
Fused Deposition Modeling (FDM) 334
Conclusion and Prospective 334
References 335
Anti-biofouling and Antimicrobial Biomaterials for Tissue Engineering 339
Introduction and Principles of Anti-biofouling and Antimicrobial Biomaterials 340
Biofilm Formation and Associated Infections 340
Anti-biofouling Biomaterials 340
PEG-Based Biomaterials 341
Poly Zwitterionic-Based Biomaterials 342
Antimicrobial Biomaterials 344
Releasing-Based Antimicrobial Biomaterials 344
Biomaterials Loaded with Antibiotics 344
Biomaterials Loaded with Silver Nanoparticles (NPs) 345
Biomaterials Loaded with Quaternary Ammonium Compounds (QACs) 346
Biomaterials Loaded with Nitric Oxide (NO) 347
Contact-Active Antibacterial Biomaterials 347
Applications in Tissue Engineering 349
Wound Dressings 349
Orthopedic Implants 352
Catheters 353
Conclusion 354
References 355
Osteoinductive and Osteoconductive Biomaterials 361
Introduction 361
Mechanism of Osteoinduction by Biomaterials 362
Identification of Osteoinductive Materials [6] 365
Classes of Orthopedic Biomaterials 365
Metals 365
Magnesium (Mg) 366
Steel 368
Titanium 369
Tantalum 371
Ceramics 372
Hydroxyapatite 373
Tricalcium Phosphate 374
Whitlockite 375
Bioactive Glasses 377
Natural Ceramic (Nacre) 379
Polymers 381
Composites 385
Role of Topography in Orthopedic Biomaterials 388
Bone as a Nanocomposite 388
Nanomaterials for Bone Regeneration and Repair 388
Conclusion 390
References 391
Bimetallic Nanoparticles for Biomedical Applications: A Review 402
Nanotechnology for Biomedical Applications 403
Nanotechnology and Nanomedicine: The Born of a New Era 403
The Use of Metallic Nanoparticles in Nanomedicine 403
Magnetic Nanoparticles 403
Pure Metallic Nanoparticles Without Magnetic Behavior 404
Metal Oxide Nanoparticles Without Magnetic Behavior 404
Bimetallic Nanoparticles 405
Bimetallic Nanoparticles (BMNPs): A Step Further 405
Synthesis of Bimetallic Nanoparticles 406
Physicochemical Approaches 406
Green Approaches 410
Bacteria-Mediated Synthesis 412
Fungi-Mediated Synthesis 412
Plant-Mediated Synthesis 413
Biomolecule-Mediated Synthesis 414
Waste Material-Mediated Synthesis 415
Bimetallic Nanoparticles as Biomedical Tools 416
Antimicrobial Applications 416
Anticancer Applications 419
Imaging Applications 422
Drug Delivery Applications 424
Photothermal Therapy Applications 425
Biosensing Applications 426
The Future of Bimetallic Nanoparticles 427
Conclusion 428
References 429
Peptide-mediated Bone Tissue Engineering 440
Introduction 441
General View of Tissue Engineering 441
Bone Tissue Engineering 441
Bone Structure and Properties 442
Bone Healing 443
The Role of Biomaterials in Bone Tissue Engineering 445
Osteoconductive Materials 445
Osteoinductive Materials 445
Vascular Materials 446
Role of Biological Molecules in Bone Tissue Engineering 447
Proteoglycans 447
Proteins 448
Peptides 449
Role of Peptides for Bone Tissue Engineering 450
Peptides Involved in Cell Adhesion 450
RGD Peptides 451
Type-I Collagen-Derived Peptides 451
PHSRN 452
FGF-2-Derived Peptides 452
Laminin-Derived Peptides 452
Osteopontin-Derived Peptide 453
Heparin-Binding Peptides 453
MEPE Peptide or AC-100 454
RRETAWA 454
Peptides Involved in Angiogenesis 454
Osteopontin-Derived Peptide (OPD) 454
Osteonectin-Derived Peptides 455
Exendin-4 455
TP508 455
QK Peptide 455
RoY Peptide 455
PBA2-1c 456
Peptides Involved in Osteoinduction 456
BMP-Derived Peptides 456
PTH1–34 or Teriparatide 457
Osteogenic Growth Peptide (OGP) 457
Calcitonin Gene-Related Peptide (CGRP) 457
Collagen-Binding (CB) Peptide 458
Collagen-Binding Motif (CBM) Peptide 458
Substance P 458
Endothelin-1 458
BCSP™-1 458
CTC Peptide 459
Cathelicidins 459
Advantages of Peptides 459
Defined Chemical Properties of Peptides 460
Incorporation of Non-native Chemistries and Functions into Peptides 460
Diverse Functions of Peptides 460
Conjugation Capability of Peptides onto Biomaterials 461
Enhancing Biofuntionality of Biomaterials Through Peptides 461
Peptides as Coating Materials 461
Biomaterial Functionalization Strategies 462
Physical Immobilization 463
Covalent Immobilization for Surface Functionalization 463
Material-Binding Peptides for Surface Functionalization 466
Peptides as Scaffold Materials 468
Self-Assembled Peptides 468
Peptide-Based Biomaterial Scaffolds 470
Conclusion 473
References 473
Antibody Mediated Osseous Regeneration: A New Strategy for Bioengineering 482
Biology and Metabolism of Bone Tissue 482
Bone Regeneration 485
Clinical Approaches to Enhance Bone Regeneration 485
Synthetic Tissue Scaffolds for Bone Regeneration 486
AMOR: Antibody Mediated Osseous Regeneration 487
Investigation of the AMOR Approach in Animal Models 490
Conclusion 491
References 492
Extracellular Matrix-based Materials for Bone Regeneration 494
Introduction 495
Characteristics of ECM from Bone Tissue and Changes During Osteogenesis 496
Decellularization 497
Physical Methods 497
Chemical Methods 498
Enzymatic Methods 499
Biological Methods 499
Application of Extracellular Matrix in Bone Tissue Engineering 500
Tissue-Derived ECM 500
Decellularized Bone ECM 506
DBM 506
Decellularized Cartilage ECM 506
SIS-ECM 507
Decellularized Other Tissue-Derived ECM 507
Cell-Derived ECM 508
ECM Hybrid Scaffolds 509
Transferable Cell-Derived ECM 517
Clumps of Cells/ECM 518
Extracellular Matrix Sheet 518
Engineering of ECM-Based Materials 519
Electrospinning 519
3D Printing 525
Hydrogels 525
Conclusion and Perspective 527
References 528
Calcium Phosphate Biomaterials for Bone Tissue Engineering: Properties and Relevance in Bone Repair 539
Introduction 539
Bone and Its Properties 541
Hierarchical Design of Bone 541
Composition of Bone Materials 542
Bone Cells 543
Structure of Bone Grafts 543
Bone Porosity 544
Bone Strength 544
Types of CaP Derivatives Present in the Body 545
Categories of CaPs 545
Hydroxyapatite (HA) 546
Tricalcium Phosphate (TCP) 547
Biphasic CaP (BCP) 547
Solubility of CaP 548
Bioactivity and Resorbability of CaP Materials 548
Cell Signalling in CaP Mediated Osteoinductivity 549
Osteoconductibility of CaP Materials 549
Biodegradability of CaP Materials 551
Characteristics of Osteoinductive Materials 553
Effect of Crystallinity 553
Effect of Solubility 554
Effect of Surface Roughness 554
Effect of Surface Charge 554
Expert Opinion and Five-Year View 555
Current Challenges and Future Directions 555
References 556
Bioactive Glasses in Orthopedic Applications 560
Introduction 561
Current Orthopedic Application of Metallic Implants 561
Bioactive Glass: Background and Future Perspective 564
Bioactive Glass Composition and Formation 565
Bioactive Glasses Reaction Mechanism and Integration Inside the Body 566
Types of Bioactive Glasses 568
Bioactive Glass Integration with Metal Implants 570
Advantages of Bioactive Glass 571
Future Advancements in Bioactive Glass 572
Conclusion 576
References 577
Advances in Tissue Engineering and Regeneration 579
Introduction 579
Tissue Engineering for Different Tissue Regeneration 582
Bone Tissue Engineering 582
Different Types of Biomaterials for Bone TE Applications 583
Current Scenario and Clinical Trials in the Field of Bone Tissue Engineering 587
Cartilage Tissue Engineering 596
Hydrogels 598
Sponges 600
Meshes 600
Neural Tissue Engineering 601
Skin Tissue Engineering 603
Cardiac Tissue Engineering 609
Biomaterials in Cardiac Tissue Engineering 611
Natural Biopolymers Used in Cardiac Tissue Engineering 611
Synthetic Biopolymers in Cardiac Tissue Engineering 611
Injectable Biomaterials in Cardiac Tissue Engineering 611
Hydrogels for Endogenous Repair and Cell Transplantation 618
Bulk Material 619
Vascular Tissue Engineering 620
Liver Tissue Engineering 622
Interfacial Tissue Engineering 623
Scaffold Fabrication Techniques for Tissue Engineering Applications 626
Freeze-Drying 626
Solvent Casting/Particle Leaching 627
Phase Separation 627
Electrospinning 627
Gas Foaming 628
Future Perspectives and Conclusion 629
References 629
Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization 649
Introduction 650
Methods 651
Database and Search Strategy 651
Bibliometric Mapping 651
Results 652
Discussion and Literature Review 654
Types of Scaffolds 654
Solid Scaffolds 655
Fluid Scaffolds 655
Required Scaffold Properties 656
Materials 656
Fabrication Techniques 660
Solvent Casting/Particulate Leaching 662
Gas Foaming 662
Freeze-Drying 662
Thermally Induced Phase Separation 663
Electrospinning 663
Rotary Jet Spinning 663
Additive Manufacturing 663
Bioreactors 664
Applications 665
Methods for Scaffold Characterization 667
Conclusions and Future Perspectives 669
Appendix 670
References 671
Recent Developments of Zn-based Medical Implants 679
Introduction 679
Biological Significance 681
The Design Criteria of Biodegradable Implants 682
Biocompatibility 683
Corrosion Properties 684
Mechanical Properties 686
Animal Testing of Zn and Zn-Based Biodegradable Metal Implants 687
Cardiovascular Implantation 687
Orthopedic Implantation 687
Summary and Future Challenges 689
References 689
Recent Physical Interaction-based Bioadhesives 694
Introduction 694
Non-covalent Interaction Derived Bioadhesives 696
Electrostatic Interaction 696
Hydrogen Bonding 699
van der Waals Force 702
Hydrophobic Interactions 703
Other Non-covalent Interactions 704
Mechanical Structure Based Bioadhesives 706
Adhesives Strength and Applications 708
Adhesion Strength of Electrostatic Interaction-Based Adhesives 708
Adhesion Strength of Hydrogen Bonding Based Adhesives 711
Adhesion Strength of van der Waals Force Derived Adhesives 712
Adhesion Strength of Hydrophobic Interaction-Based Adhesives 713
Adhesion Strength of Mechanical Structure Based Adhesives 714
Conclusion 716
Future Work 716
References 717
Tellurium, the Forgotten Element: A Review of the Properties, Processes, and Biomedical Applications of the Bulk and Nanoscale Metalloid 723
Tellurium, the Last Member of the Chalcogen Family 724
Discovery: A Difficult Task 725
Presence in the Universe and on the Earth: Occurrence and Sources 727
Physicochemical Properties of Tellurium 731
Physical Properties 731
Chemical Properties 733
Isotopes of Tellurium 737
Bulk Tellurium: Applications 738
Tellurium in Metallurgy 738
Tellurium in Catalysis 739
Tellurium in Chalcogenide Glasses 740
Tellurium in Electronic Applications 740
Tellurium in Biological Applications 742
Tellurium in Other Applications 742
Synthesis of Tellurium Nanostructures 743
Traditional Synthesis of Nanomaterials 743
Zero-Dimensional (O-D) Tellurium Nanostructures 743
One-Dimensional (1D) Tellurium Nanostructures: Nanowires, Nanotubes, Nanorods, and Nanobelts 744
Tellurium Nanowires 745
Tellurium Nanorods 745
Tellurium Nanotubes 746
Tellurium Nanobelts 746
Two-Dimensional Te Nanostructures: Tellurene 747
Complex Tellurium Nanostructures 748
Chiral Tellurium Nanostructures 748
Tellurium-Based Alloys and Hetero-Nanostructures 748
Large-Scale Production of Tellurium Nanostructures 749
Green Synthesis of Tellurium Nanomaterials 750
Nanoscale Tellurium: Applications Beyond Biomedicine 751
Tellurium Nanostructures as a Photoconductive Conversion Material 752
Nanoscale Tellurium as a Catalyst 753
Nanoscale Tellurium as a Chemical Transformation Template and Building Blocks 753
Nanoscale Tellurium as a Piezoelectric Energy Harvester 754
Nanoscale Tellurium in Ion Detection and Removal 755
Nanoscale Tellurium in Batteries 755
Nanoscale Tellurium for Gas Sensing 756
Nanoscale Tellurium as a Doping Agent 756
The Biological Role of Tellurium 757
Tellurium in Bacteria 757
Tellurium in Fungi 759
Tellurium in Plants 760
Tellurium in Human Biology 760
Tellurium Nanomaterials for Biomedical Applications 763
Nanoscale Tellurium as an Antimicrobial Agent 763
Nanoscale Tellurium as an Anticancer Agent 764
Nanoscale Tellurium as an Imaging Agent and a Biological Marker 767
Conclusions 768
References 769
Index 784

Erscheint lt. Verlag 28.2.2020
Sprache englisch
Themenwelt Medizin / Pharmazie Allgemeines / Lexika
Technik Maschinenbau
ISBN-10 3-030-34471-1 / 3030344711
ISBN-13 978-3-030-34471-9 / 9783030344719
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 25,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Antibiotika, Virostatika, Antimykotika, Antiparasitäre Wirkstoffe

von Hans-Reinhard Brodt; Achim Hörauf; Michael Kresken …

eBook Download (2023)
Thieme (Verlag)
164,99