A Guide for Machine Vision in Quality Control
Crc Press Inc (Verlag)
978-0-8153-4927-3 (ISBN)
Machine Vision systems combine image processing with industrial automation. One of the primary areas of application of Machine Vision in the Industry is in the area of Quality Control. Machine vision provides fast, economic and reliable inspection that improves quality as well as business productivity. Building machine vision applications is a challenging task as each application is unique, with its own requirements and desired outcome.
A Guide to Machine Vision in Quality Control follows a practitioner’s approach to learning machine vision. The book provides guidance on how to build machine vision systems for quality inspections. Practical applications from the Industry have been discussed to provide a good understanding of usage of machine vision for quality control. Real-world case studies have been used to explain the process of building machine vision solutions.
The book offers comprehensive coverage of the essential topics, that includes:
Introduction to Machine Vision
Fundamentals of Digital Images
Discussion of various machine vision system components
Digital image processing related to quality control
Overview of automation
The book can be used by students and academics, as well as by industry professionals, to understand the fundamentals of machine vision. Updates to the on-going technological innovations have been provided with a discussion on emerging trends in machine vision and smart factories of the future.
Sheila Anand, a Doctorate in Computer Science, is working as Professor in the Department of Informaton Technology at Rajalakshmi Engineering College, Chennai, India. She has over three decades of experience in teaching, consultancy, and research. She has worked in the software industry and has extensive experience in development of software applications and in systems audit of financial, manufacturing, and trading organizations. She guides PhD aspirants and many of her research scholars have since been awarded their doctoral degree. She has published many papers in national and international journals and is a reviewer for several journals of repute.
L. Priya is a PhD graduate working as Professor and Head, Department of Information Technology at Rajalakshmi Engineering College, Chennai, India. She has nearly two decades of teaching experience and good exposure to consultancy and research. She has delivered many invited talks, presented papers, and won several paper awards at international conferences. She has published several papers in international journals and is a reviewer for SCI indexed journals. Her areas of interest include machine vision, wireless communication, and machine learning.
Sheila Anand is a PhD graduate and Professor at Rajalakshmi Engineering College, Chennai, India. She has over three decades of experience in teaching, consultancy, and research. She has worked in the software industry and has extensive experience in development of software applications and in systems audit of financial, manufacturing, and trading organizations. She guides PhD aspirants and many of her research scholars have since been awarded their doctoral degree. She has published many papers in national and international journals and is a reviewer for several journals of repute. L. Priya is a PhD graduate working as Associate Professor and Head, Department of Information Technology at Rajalakshmi Engineering College, Chennai, India. She has nearly two decades of teaching experience and good exposure to consultancy and research. She has delivered many invited talks, presented papers, and won several paper awards at international conferences. She has published several papers in international journals and is a reviewer for SCI indexed journals. Her areas of interest include machine vision, wireless communication, and machine learning.
Computer & Human Vision System. Digital Image Fundamentals. Machine Vision System Components. Machine Vision Applications In Quality Control. Digital Image Processing For Machine Vision Applications. Case Studies. Emerging Trends And Conclusion.
Erscheinungsdatum | 20.12.2019 |
---|---|
Zusatzinfo | 3 Tables, black and white; 105 Illustrations, black and white |
Verlagsort | Bosa Roca |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 430 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 0-8153-4927-0 / 0815349270 |
ISBN-13 | 978-0-8153-4927-3 / 9780815349273 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich