MPC-Based Reference Governors (eBook)

Theory and Case Studies
eBook Download: PDF
2019 | 1st ed. 2019
XXIII, 137 Seiten
Springer International Publishing (Verlag)
978-3-030-17405-7 (ISBN)

Lese- und Medienproben

MPC-Based Reference Governors - Martin Klaučo, Michal Kvasnica
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This monograph focuses on the design of optimal reference governors using model predictive control (MPC) strategies. These MPC-based governors serve as a supervisory control layer that generates optimal trajectories for lower-level controllers such that the safety of the system is enforced while optimizing the overall performance of the closed-loop system.

The first part of the monograph introduces the concept of optimization-based reference governors, provides an overview of the fundamentals of convex optimization and MPC, and discusses a rigorous design procedure for MPC-based reference governors. The design procedure depends on the type of lower-level controller involved and four practical cases are covered:

  • PID lower-level controllers;
  • linear quadratic regulators;
  • relay-based controllers; and
  • cases where the lower-level controllers are themselves model predictive controllers.

For each case the authors provide a thorough theoretical derivation of the corresponding reference governor, followed by illustrative examples.

The second part of the book is devoted to practical aspects of MPC-based reference governor schemes. Experimental and simulation case studies from four applications are discussed in depth:

  • control of a power generation unit;
  • temperature control in buildings;
  • stabilization of objects in a magnetic field; and
  • vehicle convoy control.

Each chapter includes precise mathematical formulations of the corresponding MPC-based governor, reformulation of the control problem into an optimization problem, and a detailed presentation and comparison of results.

The case studies and practical considerations of constraints will help control engineers working in various industries in the use of MPC at the supervisory level. The detailed mathematical treatments will attract the attention of academic researchers interested in the applications of MPC.



Dr. Martin Klau?o received his first MSc. degree from the Denmark University of Technology in automatic control in 2012. The second MSc. degree obtained from process control in 2013 from the Slovak University of Technology in Bratislava. He graduated summa cum laude in 2017 at the Slovak University of Technology in Bratislava and obtained the Ph.D. degree from process control. Dr. M. Klau?o published 7 peer-reviewed current-contents papers and more than 15 conference papers in the field of optimal process control. His research is focused on optimal control methods and machine-learning-based control systems.

Associate Professor Michal Kvasnica received his diploma in process control from the Slovak University of Technology in Bratislava (STUBA), Slovakia in 2000 and Ph.D. in electrical engineering from the Swiss Federal Institute of Technology in Zurich, Switzerland in 2008. Since 2012 he is a tenured associate professor (docent) of automation at STUBA. In 2012 he was a visiting researcher at the Czech Technical University, Prague, Czech Republic. His research interests include decision making and control supported by artificial intelligence, embedded optimization and control, security and safety of cyber-physical systems, and control of human-in-the-loop systems. He is a co-author and the main developer of the MPT Toolbox for explicit model predictive control. His publication record includes 20 CC journal papers (including 9 in Automatica and IEEE Transactions), and more than 60 contributions in leading peer-reviewed international conferences. He has been a member of consortia for several EU-funded projects, including the EU FP7 ITN TEMPO project, and the EU FP6 project HYCON.
Erscheint lt. Verlag 21.5.2019
Reihe/Serie Advances in Industrial Control
Advances in Industrial Control
Zusatzinfo XXIII, 137 p. 46 illus., 24 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Elektrotechnik / Energietechnik
Technik Fahrzeugbau / Schiffbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Command Governors • constraint handling • Extended Command Governors • mixed-integer optimization • Model Predictive Control • Optimal Reference Governors • Predictive Reference Governors • Reference Governors
ISBN-10 3-030-17405-0 / 3030174050
ISBN-13 978-3-030-17405-7 / 9783030174057
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen – Use-Cases – unternehmenseigene KI-Journey

von Ralf T. Kreutzer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
42,99