Thermoelectric Thin Films -

Thermoelectric Thin Films

Materials and Devices
Buch | Hardcover
XV, 211 Seiten
2019 | 1st ed. 2019
Springer International Publishing (Verlag)
978-3-030-20042-8 (ISBN)
128,39 inkl. MwSt

This book will provide readers with deep insight into the intriguing science of thermoelectric thin films. It serves as a fundamental information source on the techniques and methodologies involved in thermoelectric thin film growth, characterization and device processing. This book involves widespread contributions on several categories of thermoelectric thin films: oxides, chalcogenides, iodates, nitrides and polymers. This will serve as an invaluable resource for experts to consolidate their knowledge and will provide insight and inspiration to beginners wishing to learn about thermoelectric thin films.

  • Provides a single-source reference on a wide spectrum of topics related to thermoelectric thin films, from organic chemistry to devices, from physical chemistry to applied physics, from synthesis to device implementation;
  • Covers several categories of thermoelectric thin films based on different material approaches such as oxides, chalcogenides, iodates, nitrides and polymers;
  • Discusses synthesis, characterization, and device processing of thermoelectric thin films, as well as the nanoengineering approach to tailor the properties of the used materials at the nanoscale level.

Paolo Mele is currently Professor at SIT Research laboratories, Shibaura Institute of Technology, Tokyo, Japan.. He obtained a Master degree in Chemistry and Ph.D. in Chemical Sciences at Genova University (Italy). In 2003 he moved to ISTEC-SRL in Tokyo to study melt-textured ceramic superconductors. Then he worked as postdoc at Kyoto University (JSPS fellowship) from 2004 to 2007, at Kyushu Institute of Technology (JST fellowship) from 2007 to 2011, at Hiroshima University (as lecturer) from 2011 to 2014 and at Muroran Institute of Technology (as associate professor) from 2015 to 2018 before reaching his current position. His research interests include materials for energy and sustainable development (superconductors and thermoelectrics); fabrication and characterization of thin films of oxides, ceramics and metals; study of the effect of nanostructuration on the physical properties; thermal transport; and vortex matter. He is the author of more than 100 papers in international scientific journals and four book chapters, and has two patents and has contributed to hundreds of communications at international conferences. He edited five books for Springer, including this one. Dario Narducci obtained his Ph.D. in Chemistry at the University of Milan. From 1988 to 1990 he was Post-Doctoral Fellow at IBM T.J. Watson Research Center. In 1990 he re-joined the University of Milan as an Assistant Professor, moving in 1997 to the University of Milano Bicocca, where he became Associate Professor of Physical Chemistry in 2000. His research interests have focused on the physical chemistry of silicon and on the transport properties of disordered materials. Since 2008 Narducci has developed an intense research activity on thermoelectricity for microharvesting. Since 2010 he is the Chief Technical Officer of a start-up developing silicon-based thermoelectric generators. He is currently involved in the ERC NanoThermMA project and is coordinating a Marie Sklodowska-Curie Global Fellowship in collaboration with the MIT to develop hybrid photovoltaic-thermoelectric generators. He is currently the president of the Italian Thermoelectric Society and served as the treasurer of the European Thermoelectric Society. Author of more than one hundred publications, Narducci also wrote books on nanotechnology and on hybrid thermoelectric-photovoltaic solar harvesters, and filed fifteen patents as well. Michihiro Ohta received his Ph.D from the Kyushu Institute of Technology in 2002. He was a postdoctoral fellow at the National Institute for Materials Science (NIMS) and the Muroran Institute of Technology before joining the National Institute of Advanced Industrial Science and Technology (AIST) in 2006. He has been a senior researcher at AIST since 2013. He was a visiting scholar at Argonne National Laboratory and Northwestern University from 2011 to 2012. He is a board member of the Thermoelectrics Society of Japan. Ohta is also a technical advisor at the startup company, Mottainai Energy, founded in 2016. His research focuses on the exploration of sulfides and nanostructured materials for thermoelectrics. Kanishka Biswas obtained his MS and Ph.D degree from the Solid State Structural Chemistry Unit, Indian Institute of Science (2009) under supervision of Prof. C. N. R. Rao and did postdoctoral research with Prof. Mercouri G. Kanatzidis at the Department of Chemistry, Northwestern University (2009-2012). He is an Associate Professor in the New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore. He is pursuing research in solid state chemistry, thermoelectrics, topological materials, 2D materials, perovskite halides and water purification. He has published 95 research papers, 1 book and 5 book chapters. He is a Young Affiliate of The World Academy of Sciences (TWAS) and an Associate of Indian Academy of Science (IASc)

Chapter1: Thin films of bismuth telluride based alloys.- Chapter2: Wearable thermoelectric devices.- Chapter3: Theory and simulations of lattice thermal conduction.- Chapter4: Fabrication and Thermoelectric Properties of PEDOT films and their composites.- Chapter5: Electric field thermopower modulation of 2D electron systems.- Chapter6: Transition-metal-nitride-based thin films as novel thermoelectric materials.- Chapter7: Thermoelectric modules based on oxide thin films.- Chapter8: Thermoelectric properties of Metal Chalcogenide nanosheets and nanofilms grown by Chemicals and Physical routes.- Chapter9: Thermoelectric oxides thin films with hopping transport.

Erscheinungsdatum
Zusatzinfo XV, 211 p. 120 illus., 99 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 499 g
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Oxide Thin Films, Multilayers and Nanocomposites • Pulsed Laser Deposition of Thin Films • Thermoelectric materials • Thin films as novel thermoelectric materials • Wearable thermoelectric devices
ISBN-10 3-030-20042-6 / 3030200426
ISBN-13 978-3-030-20042-8 / 9783030200428
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
48,00