Polypropylene Handbook (eBook)

Morphology, Blends and Composites
eBook Download: PDF
2019 | 1. Auflage
XII, 648 Seiten
Springer-Verlag
978-3-030-12903-3 (ISBN)

Lese- und Medienproben

Polypropylene Handbook -
Systemvoraussetzungen
234,33 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book extensively reviews Polypropylene (PP), the second most widely produced thermoplastic material, having been produced for over 60 years. Its synthesis, processing and application are still accompanied by vigorous R&D developments because the properties of PP are at the borderline between those of commodity and engineering thermoplastics. 

Readers are introduced to various tacticities and polymorphs of PP, and their effects on structural properties. Further, the book addresses the control of optical properties using nucleants, provides strategies for overcoming the limited cold/impact resistance of PP, examines in detail the effects of recycling, and presents guidelines for the property modification of PPs through foaming, filling and reinforcing with respect to target applications. Special attention is paid to descriptions and models of properties as a function of morphological variables. Last but not least, the book suggests potential practical applications of PP-based systems, especially in the packaging, appliances, building/construction, textile and automotive sectors. 

Each chapter, written by internationally respected scientists, reflects the current state-of-art in the respective field and offers a vital source of information for students, researchers and engineers interested in the morphology, properties, testing and modeling of PP and PP-based systems. The content is indispensable to the appropriate application of PPs and related composites.



József Karger-Kocsis (Mar 4, 1950 - Dec 13, 2018) was a professor at the Department of Polymer Engineering, Faculty of Mechanical Engineering at the Budapest University of Technology and Economics (BME) since 2009. He received his MSc in Chemical Engineering in 1974, and his Dr.techn. in 1977. In 1983 he received his PhD in chemical sciences from the Moscow, Lomonossow Institute of Fine Chemicals Technology, his DSc from the Hungarian Academy of Sciences in 1991, and in 1995 the Universität Kaiserslautern, Germany, granted him the Dr.-Ing. Habil title.
During his career he also worked at the Research Institute for the Plastics Industry, and Taurus Hungarian Rubber Works, both in Budapest, Hungary; for the TUHH in Hamburg and for the Institute for Composite Materials in Kaiserslautern, both in Germany; and for the Tshwane University of Technology in Pretoria, South Africa.
Professor Karger-Kocsis has been awarded many prizes, acknowledgements and scholarships, and has more than 500 publications. For his complete CV please refer to the Budapest University of Technology and Economics (the website of the Department of Polymer Engineering, BME). 

Tamás Bárány is associate professor of the Department of Polymer Engineering, the Faculty of Mechanical Engineering at the Budapest University of Technology and Economics (BME). He received his MSc in Industrial Design Engineering in 2001. Subsequently, he received his PhD and became a lecturer in 2004, an assistant professor in 2005, and since 2008 he has been holding the position of associate professor and head of the Department of Polymer Engineering.
He, too, has been awarded many prizes, acknowledgements and scholarships, and he has more than 80 publications. He is busily involved in tutorial activities, writing articles and organizing conferences.For his complete CV please refer to the Budapest University of Technology and Economics (the website of the Department of Polymer Engineering, BME).

József Karger-Kocsis (Mar 4, 1950 - Dec 13, 2018) was a professor at the Department of Polymer Engineering, Faculty of Mechanical Engineering at the Budapest University of Technology and Economics (BME) since 2009. He received his MSc in Chemical Engineering in 1974, and his Dr.techn. in 1977. In 1983 he received his PhD in chemical sciences from the Moscow, Lomonossow Institute of Fine Chemicals Technology, his DSc from the Hungarian Academy of Sciences in 1991, and in 1995 the Universität Kaiserslautern, Germany, granted him the Dr.-Ing. Habil title.During his career he also worked at the Research Institute for the Plastics Industry, and Taurus Hungarian Rubber Works, both in Budapest, Hungary; for the TUHH in Hamburg and for the Institute for Composite Materials in Kaiserslautern, both in Germany; and for the Tshwane University of Technology in Pretoria, South Africa.Professor Karger-Kocsis has been awarded many prizes, acknowledgements and scholarships, and has more than 500 publications. For his complete CV please refer to the Budapest University of Technology and Economics (the website of the Department of Polymer Engineering, BME).  Tamás Bárány is associate professor of the Department of Polymer Engineering, the Faculty of Mechanical Engineering at the Budapest University of Technology and Economics (BME). He received his MSc in Industrial Design Engineering in 2001. Subsequently, he received his PhD and became a lecturer in 2004, an assistant professor in 2005, and since 2008 he has been holding the position of associate professor and head of the Department of Polymer Engineering.He, too, has been awarded many prizes, acknowledgements and scholarships, and he has more than 80 publications. He is busily involved in tutorial activities, writing articles and organizing conferences.For his complete CV please refer to the Budapest University of Technology and Economics (the website of the Department of Polymer Engineering, BME).

Preface 5
In Memoriam József Karger-Kocsis 7
Contents 9
Contributors 10
1 Tacticity, Regio and Stereoregularity 12
Abstract 12
1.1 Introduction 12
1.2 Definition and Nomenclature 14
1.3 13C NMR of Polypropylenes 19
1.4 Steric Defects in PP and Models for Stereocontrol 21
1.5 Regio Defects in PP and Models for Regiocontrol 28
1.6 Heterogeneous Versus Homogeneous ZN Catalysts 32
1.7 Further Techniques for Polypropylene Tacticity Analysis 35
1.8 Polypropylene Microstructures Obtained by Non-metallocene Ligands and by Late Transition Metal 37
1.9 Concluding Remarks 39
Acknowledgements 40
References 40
2 Solid State Polymorphism of Isotactic and Syndiotactic Polypropylene 47
Abstract 47
2.1 Introduction 48
2.2 Chain Conformation of Isotactic and Syndiotactic Polypropylene in the Crystalline State 50
2.2.1 Isotactic Polypropylene 51
2.2.2 Syndiotactic Polypropylene 54
2.3 Crystal Polymorphism of Isotactic Polypropylene 54
2.4 The Crystal Structure of ? Form 58
2.4.1 The Crystal Structure of ? Form 62
2.4.2 Structural Disorder of ? Form of iPP 67
2.4.3 Crystal Structure of ? Form 69
2.4.4 Mesomorphic Form of iPP 71
2.4.5 Crystal Structure of the Trigonal Form of iPP 73
2.4.6 The “New Mesomorphic” Form in Copolymers of Isotactic Polypropylene with Branched Comonomers 78
2.5 Crystal Polymorphism of Syndiotactic Polypropylene 82
2.5.1 Crystal Structure of Form I 85
2.5.2 Structural Disorder in Form I 89
2.5.3 Crystal Structure of Form II 94
2.5.4 Structural Disorder in Form II 98
2.5.5 Crystal Structure of Form III 103
2.5.6 Crystal Structure of Form IV 107
2.5.7 The Trans-planar Mesomorphic Form of sPP 108
2.5.8 Helical Mesophase in Syndiotactic Copolymers of Propylene 115
2.6 Conclusions 116
References 118
3 Polypropylene Nucleation 130
Abstract 130
3.1 Introduction 131
3.2 Crystallization Process 133
3.3 Nucleation, the Targeted Manipulation of Crystalline Structure 140
3.3.1 Basic Characterization of Nucleating Agents 140
3.3.2 “Conventional” Heterogeneous Nucleating Agents 143
3.3.3 Soluble Nucleating Agents, Organogelators and Clarifiers for ?-iPP 149
3.3.4 Crystallization of iPP in the Presence of Soluble Organogelators 154
3.3.5 Estimation of Solubility Limit of Organogelators 159
3.3.6 Supermolecular Structure Formed in the Presence of Organogelators 163
3.3.7 Nucleating Agent Based on Trisamides of Trimesic Acid 168
3.3.8 Soluble Nucleating Agents for ?-iPP 169
3.4 Structure-Property Case Studies 175
3.4.1 Prediction of Tensile Modulus from Crystalline Parameters 175
3.4.2 Obtaining Balanced Properties by Efficient Nucleation 176
3.4.3 Improvement of Optical Properties by Efficient Nucleation 179
3.5 Summary 182
Acknowledgements 183
References 183
4 Crystallization of Polypropylene 194
Abstract 194
4.1 Introduction (Overview) 195
4.2 Methods of Crystallization Studies 197
4.3 Polymorphism 203
4.4 Nucleation and Crystal Growth in General 208
4.5 Structure of Single Crystal 210
4.6 Structure of Spherulite 213
4.7 Shish-Kebabs 218
4.8 Nucleation Theories 219
4.9 Formation of Spherulitic Structure 226
4.10 Crystallization of PP in Specific Conditions 234
4.11 The Nucleating Agents 238
4.12 Melting of Polypropylene 239
References 242
5 Morphology Development and Control 252
Abstract 252
5.1 Introduction 253
5.1.1 Characteristics of Polypropylene 254
5.1.2 Processing of PP 255
5.2 Crystallization Kinetics of PP 255
5.2.1 Effect of Temperature 255
5.2.2 Effect of Pressure 258
5.2.3 Effect of Flow 261
5.2.4 Effect of Nucleating Agents 262
5.2.5 Effect of Stereo-Defects 265
5.3 Crystallization Kinetics Models 266
5.3.1 Quiescent Crystallization Kinetics 266
5.3.2 Flow-Induced Crystallization Kinetics 268
5.4 Injection Molding 270
5.4.1 Morphology of Injection Molded PP 270
5.4.2 Morphology of Micro-Injection-Molded PP 273
5.4.3 Advanced Methods to Control Morphology of Injection Molded Parts 275
5.5 Modeling Morphology in Injection Molded Parts 283
5.5.1 Fibrillar Morphology 283
5.5.2 Distribution of Spherulite Diameters 285
5.5.3 Simulation of Morphology Development in Injection Molded IPP: A Case Study 286
5.6 Other Processing Techniques 294
5.6.1 Compression Molding 294
5.6.2 Extrusion-Related Techniques 295
References 296
6 Polypropylene Copolymers 304
Abstract 304
6.1 History of PP Copolymers 305
6.2 Homogeneous Random Copolymers 307
6.2.1 Ethylene/Propylene Random Copolymers 307
6.2.2 Propylene Random Co- and Terpolymers with Higher ?-Olefins 316
6.3 Heterophasic Copolymers 324
6.3.1 Matrix Design 331
6.3.2 Elastomer Design 334
6.3.3 Modification of Heterophasic Copolymers 344
6.4 Application of PP Copolymers 349
References 354
7 Particulate Filled Polypropylene: Structure and Properties 365
Abstract 366
7.1 Introduction 366
7.2 Factors Determining the Properties of Particulate Filled Polymers 368
7.3 Filler Characteristics 370
7.3.1 Particle Size and Distribution 370
7.3.2 Specific Surface Area, Surface Energy 371
7.3.3 Particle Shape 371
7.3.4 Other Characteristics 372
7.4 Structure 373
7.4.1 Crystalline Matrices, Nucleation 373
7.4.2 Segregation, Attrition 375
7.4.3 Aggregation 375
7.4.4 Orientation of Anisotropic Particles 377
7.5 Interfacial Interactions, Interphase 378
7.5.1 Type and Strength of Interaction 379
7.5.2 Interphase Formation 381
7.5.2.1 Wetting 384
7.6 Surface Modification 385
7.6.1 Non-reactive Treatment 385
7.6.2 Coupling 387
7.6.3 Functional Polymers 388
7.6.4 Soft Interlayer 389
7.7 Local Micromechanical Deformations 390
7.7.1 Stress Distribution 390
7.7.2 Debonding 390
7.7.3 Other Deformation Mechanisms 391
7.8 Properties 393
7.8.1 Rheological Properties 394
7.8.2 Stiffness 395
7.8.3 Properties Measured at Large Deformations 396
7.8.4 Fracture and Impact Resistance 398
7.8.5 Flammability 399
7.8.6 Conductivity 399
7.8.7 Other Properties 400
7.9 Special Composites 401
7.9.1 Multicomponent Materials 401
7.9.2 Layered Silicate Nanocomposites 404
7.9.3 Natural Reinforcements (Wood, Lignin) 407
7.10 Conclusions 411
Acknowledgements 412
References 412
8 Polypropylene Blends: Properties Control by Design 426
Abstract 427
8.1 Introduction 427
8.2 Basic Principles of Polymer Blends 428
8.3 PP Binary Blends 431
8.3.1 PP/Thermoplastic Blends 431
8.3.1.1 PP/PA Blends 432
8.3.1.2 PP/PS Blends 432
8.3.1.3 PP/Polyethylene Co-octene (POE) 433
8.3.1.4 PP/PET 433
8.3.1.5 PP/LCP 433
8.3.1.6 PP/Polysulfone 433
8.3.1.7 PP/PS Nanoblend 433
8.3.2 PP Thermoplastic Elastomer 434
8.3.2.1 TPO and PP/Rubber Blends 434
8.3.2.2 TPV 435
8.3.3 PP/Thermoset Blends 438
8.3.3.1 PP/Unsaturated Polyester Blends 439
8.3.3.2 PP/Epoxy Blends 439
8.3.3.3 PP/Novolac Blends 439
8.3.4 All-PP Blends 440
8.3.4.1 PP Blends with Different Tacticity 440
8.3.4.2 PP/Functional PP Blends 440
8.3.4.3 Bimodal PP Blends 441
8.3.4.4 Linear and Branched PP Blends 441
8.4 Recycled PP Blends 441
8.4.1 Recycled PP/Other Polymer Blends 441
8.4.2 PP/Recycled Polymer Blends 442
8.5 PP Ternary Blends 444
8.6 Manufacturing of PP Blends 445
8.6.1 Melt Blending 445
8.6.2 Fiber Spinning (Microfibril and Nanofibril) 448
8.6.3 Blown Film 448
8.6.4 Microlayer Co-extrusion 449
8.6.5 Microporous Membranes and Barrier Film Processing 449
8.6.6 Electron Beam Irradiation 450
8.6.7 Foaming 451
8.6.8 Water-Assisted Injection Molding 452
8.6.9 Rotational Molding 452
8.6.10 In Situ Polymerization 453
8.6.11 Microcellular Injection Molding and Dynamic Packing Injection Molding 453
8.7 Structure-Property Relationship 453
8.7.1 Impact Modification and Toughening 453
8.7.2 Crystallization 458
8.7.3 Rheology 462
8.7.4 Other Properties 464
8.7.4.1 Foamability 464
8.7.4.2 Dyeability 465
8.7.4.3 Weatherability 465
8.8 Compatibilization of PP Blends 466
8.8.1 Physical Compatibilization 466
8.8.2 Reactive Compatibilization 470
8.8.3 Compatibilization Using Nanofiller 474
8.9 Optimization, Modeling and Simulation 475
8.9.1 Optimization 475
8.9.2 Modeling of Flow-Induced Crystallization 476
8.9.3 Molecular Simulation 477
8.10 Conclusion and Future Prospective 477
References 478
9 Composites 488
Abstract 489
9.1 Introduction 491
9.2 Nanocomposites 493
9.2.1 Preparation 494
9.2.1.1 In Situ Polymerization 495
9.2.1.2 Solvent-Assisted Techniques 496
9.2.1.3 Melt Compounding 496
9.2.2 Structure Development and Characterization 499
9.2.2.1 Particle Dispersion 499
9.2.2.2 Matrix Polymer (Bulk) 499
9.2.2.3 Interphase 500
9.2.3 Properties and Their Prediction 500
9.2.3.1 Mechanical Response 501
9.2.3.2 Rheological Behavior 503
9.2.3.3 Thermal Behavior 504
9.2.3.4 Other Properties 505
9.2.4 Processing and Applications 506
9.3 Discontinuous Fiber-Reinforced Composites 506
9.3.1 Manufacturing 507
9.3.2 Structure Development and Characterization 509
9.3.3 Properties and Their Prediction 512
9.3.3.1 Mechanical Response 512
9.3.3.2 Rheological Behavior 520
9.3.3.3 Thermal Properties 521
9.3.3.4 Other Properties 522
9.3.4 Processing and Applications 522
9.4 Mat-Reinforced Composites 523
9.4.1 Manufacturing 525
9.4.2 Structure Development and Characterization 526
9.4.3 Properties and Their Prediction 529
9.4.3.1 Mechanical Response 529
9.4.3.2 Rheological Behavior 531
9.4.3.3 Thermal Behavior 532
9.4.3.4 Other Properties 533
9.4.4 Applications 533
9.5 Fabric-Reinforced Composites 534
9.5.1 Manufacturing 535
9.5.2 Structure Development and Characterization 539
9.5.3 Properties and Their Prediction 541
9.5.3.1 Mechanical Response 541
9.5.3.2 Rheological Behavior 543
9.5.3.3 Thermal Behavior 548
9.5.3.4 Other Properties 549
9.5.4 Processing and Applications 551
9.6 Laminate Composites 552
9.6.1 Manufacturing 553
9.6.2 Structure Development and Characterization 556
9.6.3 Properties and Their Prediction 560
9.6.3.1 Mechanical Response 560
9.6.3.2 Rheological Behavior 561
9.6.3.3 Thermal Behavior 561
9.6.3.4 Other Properties 562
9.6.4 Processing and Applications 563
9.7 Conclusion and Outlook 563
References 564
10 Foams 586
Abstract 586
10.1 Introduction—Basics of Foaming 587
10.1.1 Market Situation 587
10.1.2 Basics of Foaming 587
10.1.2.1 Diffusion and Solubility 588
10.1.2.2 Nucleation 590
10.1.2.3 Cell Growth 591
10.1.2.4 Cell Structure and Foam Stabilization 592
10.1.3 Foam Morphology and Cell Types 593
10.1.4 Foam Relevant Properties 594
10.1.4.1 Rheology 595
10.1.4.2 Crystallization 596
10.1.5 Blowing Agents 598
10.2 Foam Processing 600
10.2.1 Batch Processes 600
10.2.2 Foam Extrusion 602
10.2.3 Bead Foaming 608
10.2.3.1 Autoclave Bead Foams 610
10.2.3.2 Continuous Produced Bead Foams 614
10.2.3.3 Pre-expansion of EPP 615
10.2.3.4 Steam-Chest Molding 616
10.2.3.5 Fusion Process 618
10.2.4 Foam Injection Molding 620
10.2.4.1 Chemical Foam Injection Molding 622
10.2.4.2 Physical Foam Injection Molding 623
10.2.4.3 Mechanical Properties 624
10.2.4.4 Advantages and Disadvantages 626
10.2.4.5 Conclusion 627
10.2.5 Other Methods 628
10.2.5.1 Stretching of Films 628
10.2.5.2 Templated Porous Polymers 629
10.3 PP Foams and Additives 630
10.3.1 Temperature-Insensitive Additives 630
10.3.1.1 Foams with CaCO3 631
10.3.1.2 Foams with Talc 631
10.3.1.3 Foams with Clay 631
10.3.1.4 Foams with Carbon Fillers 634
10.3.1.5 Foams with Sodium Benzoate 636
10.3.1.6 Foams with Hollow Glass Microspheres 636
10.3.1.7 Foams with Zeolite 636
10.3.1.8 Conclusion 637
10.3.2 Temperature-Sensitive Additives 637
Acknowledgements 641
References 641

Erscheint lt. Verlag 18.3.2019
Zusatzinfo XII, 641 p. 367 illus., 169 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte Applications of PP • Polypropylene foam(s) • Polypropylene homo- and copolymers • Polypropylene melting/crystallization • Polypropylene nucleation • Polypropylene polymorphism • Polypropylene processing-induced morphology • Self-reinforced polypropylene • Structure-property-processing relationships
ISBN-10 3-030-12903-9 / 3030129039
ISBN-13 978-3-030-12903-3 / 9783030129033
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 22,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
79,99