Data Science for Wind Energy - Yu Ding

Data Science for Wind Energy

(Autor)

Buch | Hardcover
400 Seiten
2019
CRC Press (Verlag)
978-1-138-59052-6 (ISBN)
129,95 inkl. MwSt
This book shows how data science methods can improve decision making for wind energy applications. A broad set of data science methods will be covered, and the data science methods will be described in the context of wind energy applications, with specific wind energy examples and case studies.
Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author’s book site at https://aml.engr.tamu.edu/book-dswe.

Features



Provides an integral treatment of data science methods and wind energy applications
Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs
Presents real data, case studies and computer codes from wind energy research and industrial practice
Covers material based on the author's ten plus years of academic research and insights

Yu Ding is the Mike and Sugar Barnes Professor of Industrial and Systems Engineering and Professor of Electrical and Computer Engineering at Texas A&M University, and a Fellow of the Institute of Industrial & Systems Engineers and the American Society of Mechanical Engineers

Chapter 1 □ Introduction

Part I Wind Field Analysis

Chapter 2 □ A Single Time Series Model

Chapter 3 □ Spatiotemporal

Chapter 4 □ Regimeswitching

Part II Wind Turbine Performance Analysis

Chapter 5 □ Power Curve Modeling and Analysis

Chapter 6 □ Production Efficiency Analysis

Chapter 7 □ Quantification of Turbine Upgrade

Chapter 8 □ Wake Effect Analysis

Chapter 9 □ Overview of Turbine Maintenance Optimization

Chapter 10 □ Extreme Load Analysis

Chapter 11 □ Computer Simulator Based Load Analysis

Chapter 12 □ Anomaly Detection and Fault Diagnosis

Erscheinungsdatum
Zusatzinfo 58 Tables, black and white; 103 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 880 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 1-138-59052-5 / 1138590525
ISBN-13 978-1-138-59052-6 / 9781138590526
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90