Advances in Heart Valve Biomechanics
Springer International Publishing (Verlag)
978-3-030-01991-4 (ISBN)
Dr. Michael Sacks is a Professor of Biomedical Engineering at The University of Texas at Austin. He is a world authority on cardiovascular biomechanics, particularly on the biomechanical behavior and function of heart valves and developing patient-specific simulation-based approaches for the treatment of valve diseases. His research is based on rigorous quantification, mathematical modeling, and simulation of the mechanical behavior of the cells and tissues of the cardiovascular system in health and disease. His approaches include multi-scale studies of cell/tissue/organ, especially how they mechanical interact as a system. Dr. Sacks is also active in the biomechanics of engineered tissues and scaffolds and in understanding the in-vitro and in-vivo remodeling processes from a functional biomechanical perspective.Dr. Jun Liao is an Associate Professor of Biomedical Engineering at the University of Texas at Arlington. Dr. Liao is an expert in tissue biomechanics and bioengineering, with interests in heart valves, cardiac muscle, and many other soft tissues. His research focus is to better understand the role of biomechanics in maintaining optimal tissue performance in physiological conditions and the biomechanical abnormality in diseased conditions, aiming to improving tissue replacement, repair, and medical intervention for diseases. Dr. Liao is a member of BMES, ASME, and AAAS and a Fellow of the American Heart Association.
Biological Mechanics of the Heart Valve Interstitial Cell.- Endothelial Mechanotransduction.- The Role of Proteoglycans and Glycosaminoglycans in Heart Valve Biomechanics.- On the Unique Functional Elasticity and Collagen Fiber kinematics of Heart Valve Leaflets.- Tricuspid Valve Biomechanics: A Brief Review.- Measurement Technologies for Heart Valve Function.- Calcific Aortic Valve Disease: Pathobiology, Basic Mechanisms, and Clinical Strategies.- Remodeling Potential of the Mitral Heart Valve Leaflet.- Molecular and Cellular Developments in Heart Valve Development and Disease.- Mechanical Mediation of Signaling Pathways in Heart Valve Development and Disease.- Tissue Engineered Heart Valves.- Decellularization in Heart Valve Tissue Engineering.- Novel Bioreactors for Mechanistic Studies of Engineered Heart Valves.- Bioprosthetic Heart Valves: From a Biomaterials Perspective.- Computational Modeling of Heart Valves: Understanding and Predicting Disease.- Biomechanics and Modeling of Tissue-Engineered Heart Valves.- Fluid-structure interaction analysis of bioprosthetic heart valves: the application of a computationally-efficient tissue constitutive model.- Towards Patient-Specific Mitral Valve Surgical Simulations.
Erscheinungsdatum | 14.02.2019 |
---|---|
Zusatzinfo | XXV, 487 p. 125 illus., 95 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 931 g |
Themenwelt | Medizin / Pharmazie ► Medizinische Fachgebiete ► Biomedizin |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
Naturwissenschaften ► Biologie ► Mikrobiologie / Immunologie | |
Naturwissenschaften ► Biologie ► Zellbiologie | |
Technik ► Umwelttechnik / Biotechnologie | |
Schlagworte | automated heart valve bioreactors • bending force in heart valve development • biomechanics in mitral valve repairing • biomechanics of myxoid mitral valves • biomechanics of transcatheter heart valves • biomechanics tissue engineered heart valves • Cardiac biomaterials • computational modeling for the mitral heart valve • computational modeling of heart valves • decellularized heart valve scaffolds • GAGs in heart valve biomechanics • geometrical symmetry in bioprosthetic heart valve • heart valve 3D printing • heart valve calcification • heart valve leaflets • heart valve mechanotransduction • heart valve tissue engineering • mechanobiology of heart valve endothelial cells • pregnancy-induced remodeling in heart valves • viscoelasticity of heart valve tissues |
ISBN-10 | 3-030-01991-8 / 3030019918 |
ISBN-13 | 978-3-030-01991-4 / 9783030019914 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich