Third Harmonic Utilization in Permanent Magnet Machines -  Kai Wang,  Zi-Qiang Zhu

Third Harmonic Utilization in Permanent Magnet Machines (eBook)

eBook Download: PDF
2018 | 1st ed. 2019
XI, 211 Seiten
Springer Singapore (Verlag)
978-981-13-0629-7 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book investigates the utilization of harmonics in the permanent magnet (PM) or rotor shape to improve the torque density of PM brushless AC machines including three-phase inner rotor and outer rotor machines, five-phase machines, dual three-phase machines, linear machines, by means of analytical, finite element analyses, and as well as experimental validation. 

The torque density can be improved while the torque ripple remains low in PM shaping utilizing the 3rd harmonic. In this book, the analytical expression of output torque is derived for PM machines with rotor shape using the 3rd harmonic, and then the optimal 3rd harmonic for maximizing torque is analytically obtained. 

The book compares the PM shape in surface-mounted PM (SPM) machines and the rotor lamination shape in interior PM (IPM) machines utilizing the 3rd harmonic, and it becomes clear that their shaping methods and amount of torque improvement are different. 

In a five-phase PM machine, the 3rd harmonic can be utilized in both the current waveform and PM shapes to further improve the output torque. For the dual three-phase SPM machines without deteriorating the torque more than 30% when the optimal 3rd harmonic into both the current and PM shape are injected.

The harmonics in airgap flux density have significant influence on the cogging torque, stator iron flux distribution, and radial force between the rotor and stator. These effects has been investigated as well in this book.



For internal use only:
Professional Experience
2015-present Professor, Phd supervisor
Nanjing University of Aeronautics and Astronautics
2014-2015 Research and Development Engineer, Ansys Inc., PA, USA
2013-2014 Research associate Siemens Sheffield University Wind Power Research Centre, UK
2010-2013 Research associate, Sheffield University, UK
2009-2010 Post-doctoral researcher, Memorial University, Newfoundland, Canada
EDUCATION
2010-2013 Ph.D in Electrical Engineering, Sheffield University, UK
2004-2009 Ph.D in Electrical Engineering, Zhejiang University, Hangzhou, China.
2000-2004 B.S. in Automation, China Jiliang University, Hangzhou, China
EXPERIENC
2014-2015 Co-simulation between Maxwell and Matlab
2013-2014 PM machine design for wind power
2010-2013 PM machine design for high performance EPS applications
Demonstrator for the undergraduate student in Sheffield University
2009-2010 High efficiency line-start PM motor design and IPM generator design for wind power
2007-2009 Inverter and DSP controller for high speed sensorless control systems.
Technical support of MagneForce motor design software
2007.7-2007.9 Internship position of PM motor design in TECO 
2006-2007 Optimization and development of high-speed sensorless permanent magnet motors
2005-2006 Finite element analysis of three-dimension artificial heart pump motor
PM machine design for high performance EPS applications
Serial DC motor design for electrical machine tools (Bosch Company)
2004-2005 Optimization design of high speed generator for micro-gas turbine

AWARDS AND ORGANIZATION
2014-present IEEE Senior member
2012 Best paper awards in international conference and exhibition on ecological vehicles and renewable energy
2009-2010 Excellent plan for Ph.D thesis of Zhejiang Univeristy Excellent graduate student of Zhejiang University
2007-2008 First-Class Scholarship for Excellent Student of Zhejiang University
'TECO' Enterprise Scholarship of Zhejiang University
'MPS' Enterprise Scholarship of Zhejiang University
'Wang Guosong' Scholarship of Zhejiang University
Award of Excellent Leadership of Graduate Student of ZhejiangUniversity
Award for paper published on Journal of Applied Physics
2000-2004 Excellent Graduate Student of China Jiliang University
First-Class Scholarship for Excellent Student of China Jiliang University (4 times)


This book investigates the utilization of harmonics in the permanent magnet (PM) or rotor shape to improve the torque density of PM brushless AC machines including three-phase inner rotor and outer rotor machines, five-phase machines, dual three-phase machines, linear machines, by means of analytical, finite element analyses, and as well as experimental validation. The torque density can be improved while the torque ripple remains low in PM shaping utilizing the 3rd harmonic. In this book, the analytical expression of output torque is derived for PM machines with rotor shape using the 3rd harmonic, and then the optimal 3rd harmonic for maximizing torque is analytically obtained. The book compares the PM shape in surface-mounted PM (SPM) machines and the rotor lamination shape in interior PM (IPM) machines utilizing the 3rd harmonic, and it becomes clear that their shaping methods and amount of torque improvement are different. In a five-phase PM machine, the 3rd harmonic can be utilized in both the current waveform and PM shapes to further improve the output torque. For the dual three-phase SPM machines without deteriorating the torque more than 30% when the optimal 3rd harmonic into both the current and PM shape are injected.The harmonics in airgap flux density have significant influence on the cogging torque, stator iron flux distribution, and radial force between the rotor and stator. These effects has been investigated as well in this book.

For internal use only:Professional Experience 2015-present Professor, Phd supervisor Nanjing University of Aeronautics and Astronautics 2014-2015 Research and Development Engineer, Ansys Inc., PA, USA 2013-2014 Research associate Siemens Sheffield University Wind Power Research Centre, UK 2010-2013 Research associate, Sheffield University, UK 2009-2010 Post-doctoral researcher, Memorial University, Newfoundland, CanadaEDUCATION 2010-2013 Ph.D in Electrical Engineering, Sheffield University, UK 2004-2009 Ph.D in Electrical Engineering, Zhejiang University, Hangzhou, China. 2000-2004 B.S. in Automation, China Jiliang University, Hangzhou, ChinaEXPERIENC 2014-2015 Co-simulation between Maxwell and Matlab 2013-2014 PM machine design for wind power 2010-2013 PM machine design for high performance EPS applications Demonstrator for the undergraduate student in Sheffield University 2009-2010 High efficiency line-start PM motor design and IPM generator design for wind power 2007-2009 Inverter and DSP controller for high speed sensorless control systems. Technical support of MagneForce motor design software 2007.7-2007.9 Internship position of PM motor design in TECO  2006-2007 Optimization and development of high-speed sensorless permanent magnet motors 2005-2006 Finite element analysis of three-dimension artificial heart pump motor PM machine design for high performance EPS applications Serial DC motor design for electrical machine tools (Bosch Company) 2004-2005 Optimization design of high speed generator for micro-gas turbineAWARDS AND ORGANIZATION 2014-present IEEE Senior member 2012 Best paper awards in international conference and exhibition on ecological vehicles and renewable energy 2009-2010 Excellent plan for Ph.D thesis of Zhejiang Univeristy Excellent graduate student of Zhejiang University 2007-2008 First-Class Scholarship for Excellent Student of Zhejiang University “TECO” Enterprise Scholarship of Zhejiang University “MPS” Enterprise Scholarship of Zhejiang University “Wang Guosong” Scholarship of Zhejiang University Award of Excellent Leadership of Graduate Student of ZhejiangUniversity Award for paper published on Journal of Applied Physics 2000-2004 Excellent Graduate Student of China Jiliang University First-Class Scholarship for Excellent Student of China Jiliang University (4 times)

Contents 5
Abstract 9
1 General Introduction 12
1.1 Pole Shaping Techniques 16
1.1.1 Pulse Width Modulation 16
1.1.2 Modular Pole 17
1.1.3 Halbach 18
1.1.4 Pole Shaping 19
1.1.5 Sinusoidal Plus 3rd Harmonic Shaped Rotor Shape 21
1.2 Outline of the Book 21
2 Torque Enhancement of Three Phase Surface-Mounted Permanent Magnet Machine Using 3rd Order Harmonic 23
2.1 Introduction 23
2.2 SPM Machines with Various PM Shapes 25
2.3 PM Shape with Optimal 3rd Harmonic and FE Validation 27
2.3.1 Sinusoidal Shaping PM 28
2.3.2 PM Shape with Optimal Amplitude of 3rd Harmonic 30
2.3.3 FE Validation 33
2.3.4 Influence of PM Edge Thickness 34
2.4 Finite Element Analysis of Electromagnetic Performance 37
2.4.1 Open-Circuit Flux Density Distribution and Back-EMFs 37
2.4.2 Torque Characteristics 37
2.5 Experimental Verification and Discussions 42
2.6 Summary 45
References 47
3 Average Torque Improvement of Three Phase Interior Permanent-Magnet Machine Using 3rd Harmonic in Rotor Shape 49
3.1 Introduction 49
3.2 Rotor Configurations of IPM Machines 51
3.3 Rotor Shaping with 3rd Harmonic 51
3.3.1 ICS Shaped Rotor 53
3.3.2 Rotor Shape with Different Amplitude of 3rd Harmonic 55
3.4 Simplified Analytical Analysis of Average Torque Improvement 57
3.5 Finite Element Analysis of Electromagnetic Performance 60
3.5.1 Open-Circuit Flux Density Distribution and Back-EMFs 60
3.5.2 Torque Characteristics 63
3.6 Experimental Verification and Discussions 67
3.7 Summary 71
References 71
4 Third Order Harmonic Utilization in In-Wheel Machines to Improve Output Torque 75
4.1 Introduction 75
4.2 In-Wheel Machines with Various PM-Shaped Rotor 76
4.3 PM Shape with Optimal 3rd Harmonic 78
4.3.1 Influence of PM Edge Thickness 78
4.4 Finite Element Analysis of Electromagnetic Performance 80
4.4.1 Open-Circuit Flux Density Distribution and Back-EMFs 81
4.4.2 Torque Characteristics 83
4.5 Summary 85
References 85
5 Influence of Airgap Flux Density Waveform on Optimal Split Ratio and Torque Density of SPM Machines 88
5.1 Introduction 88
5.2 General Torque Density Equation 90
5.3 Derivation of Optimal Split Ratio for Maximum Torque Density 92
5.3.1 Calculation of Slot Area 92
5.3.2 Optimal Split Ratio 94
5.3.3 TD Comparison Under Optimal Split Ratio 95
5.4 FE Analysis of Optimal Split Ratio and Torque 100
5.5 Experimental Verification 102
5.6 Summary 106
References 107
6 Investigation of Stator Flux Density and Iron Loss in 3rd Order Harmonic Shaped Surface-Mounted Permanent Magnet Machines 108
6.1 Introduction 108
6.2 SPM Machines with Various PM Shapes 110
6.3 Analytically Predicted Influence of 3rd Harmonic on Staror Iron Loss 111
6.3.1 Flux Density 112
6.3.2 Iron Loss 117
6.4 Finite Element Analysis 119
6.5 Summary 127
References 128
7 Analysis of Cogging Torque in Surface-Mounted Permanent Magnet Machines with Shaped Magnets 129
7.1 Introduction 129
7.2 Analytical Prediction of Cogging Torque Based on Energy Method 131
7.2.1 Simplified Airgap Permanence Function 132
7.2.2 Cogging Torque for Sinusoidal Airgap Flux Density Distribution 134
7.2.3 Cogging Torque for Sine+3rd Airgap Flux Density Distribution 135
7.2.4 Cogging Torque for Sine and Sine+3rd Airgap Flux Density Distributions 138
7.3 Three-Phase SPM Machines with Shaped PMs 139
7.4 FE Analysis 140
7.5 Experimental Verification 146
7.6 Summary 148
References 148
8 Influence of Harmonics on Radial Force and Vibration of Surface-Mounted Permanent Magnet Machines 150
8.1 Introduction 150
8.2 12-Slot/10-Pole PM Machines with Shaped Magnets 152
8.3 Radial Force Density Distributions 153
8.3.1 Radial Force Density Under No Load Condition 153
8.3.2 Radial Force Density Under Rated Load 155
8.4 Mode Analysis 160
8.5 Summary 160
References 163
9 Multi-objective Optimization of & !blank
9.1 Introduction 165
9.2 Topology and Parametric Model of SPM Machine 167
9.3 Multi-objective Optimization Procedure 169
9.3.1 Flowchart of Multi-objective Optimization 169
9.3.2 Sensitivity Analysis 171
9.3.3 Multi-objective Optimization 172
9.4 Electromagnetic Performance Comparison 175
9.4.1 Open-Circuit Flux Density Distributions and Back-EMFs 175
9.4.2 Torque Characteristics 179
9.4.3 Efficiency 179
9.5 Experimental Validation and Discussion 181
9.6 Summary 181
References 184
10 Using Third Harmonic for Shape Optimization of Flux Density Distribution in Slotless Linear Permanent-Magnet Machine 186
10.1 Introduction 186
10.2 PMLMS with Various PM Shapes 188
10.3 PM Shape Optimization 189
10.3.1 Simplified Estimation of PM Shapes 189
10.3.2 Optimization of Sinusoidal PM Shapes 191
10.3.3 PM Shape with Third Harmonic 192
10.4 Performance Evaluation 192
10.5 Summary 199
References 200
11 Design and Analysis of Permanent Magnet Linear Synchronous Machine with Third Harmonic Shaping Mover 202
11.1 Introduction 202
11.2 PMLSM with Different Shaping Movers 204
11.3 Optimal Design of PM Edge Thickness and Pole Arc Coefficient 205
11.4 Electromagnetic Performance Comparision 208
11.4.1 Open-Circuit Flux Density Distributions and Back-EMFs 209
11.4.2 Thrust Force Characteristics 210
11.4.3 Losses and Efficiency 213
11.5 Summary 215
References 215

Erscheint lt. Verlag 29.8.2018
Zusatzinfo XI, 211 p. 140 illus., 132 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Harmonic current injection • Permanent magnet machines • PM shaping • Third harmonic • Torque density • Torque ripple
ISBN-10 981-13-0629-X / 981130629X
ISBN-13 978-981-13-0629-7 / 9789811306297
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Manufacturing Excellence in der Smart Factory

von Jürgen Kletti; Jürgen Rieger

eBook Download (2023)
Springer Vieweg (Verlag)
69,99