Wireless Communications for Power Substations: RF Characterization and Modeling (eBook)

eBook Download: PDF
2018 | 1st ed. 2019
XXII, 187 Seiten
Springer International Publishing (Verlag)
978-3-319-91328-5 (ISBN)

Lese- und Medienproben

Wireless Communications for Power Substations: RF Characterization and Modeling - Basile L. Agba, Fabien Sacuto, Minh Au, Fabrice Labeau, François Gagnon
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book consists of the identification, characterization, and modeling of electromagnetic interferences in substations for the deployment of wireless sensor networks. The authors present in chapter 3 the measurement setup to record sequences of impulsive noise samples in the ISM band of interest. The setup can measure substation impulsive noise, in wide band, with enough samples per time window and enough precision to allow a statistical study of the noise. During the measurement campaign, the authors recorded around 120 noise sequences in different substations and for four ranges of equipment voltage, which are 25 kV, 230 kV, 315 kV and 735 kV. A characterization process is proposed, by which physical characteristics of partial discharge can be measured in terms of first- and second-order statistics. From the measurement campaign, the authors infer the characteristics of substation impulsive noise as a function of the substation equipment voltage, and can provide representative parameters for the four voltage ranges and for several existing impulsive noise models.

The authors investigate in chapters 4 and 5 the modeling of electromagnetic interferences caused by partial discharge sources. First, the authors propose a complete and coherent approach model that links physical characteristics of high-voltage installations to the induced radio-interference spectra of partial discharge sources. The goodness-of-fit of the proposed physical model has been measured based on some interesting statistical metrics. This allows one to assess the effectiveness of the authors' approach in terms of first- and second-order statistics. Chapter 6 proposes a model based on statistical approach. Indeed, substation impulsive noise is composed of correlated impulses, which would require models with memory in order to replicate a similar correlation. Among different models, we have configured a Partitioned Markov Chain (PMC) with 19 states (one state for the background noise and 18 states for the impulse); this Markov-Gaussian model is able to generate impulsive noise with correlated impulse samples. The correlation is observable on the impulse duration and the power spectrum of the impulses. Our PMC model provides characteristics that are more similar to the characteristics of substation impulsive noise in comparison with other models, in terms of time and frequency response, as well as Probability Density Functions (PDF). Although PMC represents reliably substation impulsive noise, the model remains complex in terms of parameter estimation due to a large number of Markov states, which can be an obstacle for future wireless system design. In order to simplify the model, the authors decrease the number of states to 7 by assigning one state to the background noise and 6 states to the impulse and we call this model PMC-6. PMC-6 can generate realistic impulses and can be easily implemented in a receiver in order to mitigate substation impulsive noise. Representative parameters are provided in order to replicate substation impulsive noise for different voltage ranges (25-735 kV).

 Chapter 7, a generalized radio-noise model for substations is proposed, in which there are many discharges sources that are randomly distributed over space and time according to the Poisson field of interferers approach. This allows for the identification of some interesting statistical properties of moments, cumulants and probability distributions. These can, in turn, be utilized in signal processing algorithms for rapid partial discharge's identification, localization, and impulsive noise mitigation techniques in wireless communications in substations.

The primary audience for this book is the electrical and power engineering industry, electricity providers and companies who are interested in substation automation systems using wireless communication technologies for smart grid applications. Researchers, engineers and students studying and working in wireless communication will also want to buy this book as a reference.


Foreword 7
Preface 9
Acknowledgments 12
About the Authors 13
Contents 16
1 Introduction 20
1.1 Motivation 20
1.2 Monograph Organization 22
1.3 Contributions 23
2 EMI and Wireless Communications in Power Substations 26
2.1 Introduction 26
2.2 Concept of EMI and Classification 26
2.2.1 Definition of EMI Sources 27
2.2.2 Natural Noise Sources 27
2.2.3 Man-Made Noise Sources 28
2.3 Electromagnetic Interference in Substations 28
2.3.1 Functions of Power Substations 28
2.3.2 Pieces of Equipment and Electrical Operations 29
2.3.2.1 Corona Effect 30
2.3.2.2 Partial Discharges 31
2.3.3 Early Impulsive Noise Measurements 32
2.3.4 Ionization Process and Electrical Discharge in Gases 32
2.3.5 Partial Discharges Mechanism 33
2.3.6 Measurements and Characterization of Partial Discharge Sources 35
2.3.6.1 Measurement Techniques 35
2.3.6.2 PD Currents Impulses 35
2.3.6.3 PD Electromagnetic Radiations 36
2.3.6.4 Characterization of PD Impulses 37
2.3.7 Partial Discharge Modeling 37
2.3.7.1 Physical PD Models 38
2.3.7.2 Statistical PD Models for Wireless Channels 38
2.4 Characterization and Impulsive Noise Models 40
2.4.1 A Statistical Characterization of Impulsive Noise 40
2.4.2 Impulsive Noise Models 41
2.4.3 Probability Models of Impulsive Noise 42
2.4.3.1 Memoryless Models 43
2.4.3.2 Impulsive Noise with Memory: Burst Noise 46
2.5 Wireless Communications in Substations 49
2.5.1 Communication Channels in Presence of Impulsive Noise 49
2.5.2 Wireless Technologies 50
2.5.3 Existing Systems for Wireless Communications in High Voltage Environment 50
2.6 Summary 52
3 Impulsive Noise Measurements 53
3.1 Objectives of the Measurement Campaign 54
3.2 Measurement Setup 54
3.2.1 Design of the Setup 55
3.2.2 Tests in Laboratory 56
3.2.3 Impulse Detection Method 58
3.3 Measurements in Substation 1 61
3.3.1 Substation Presentation 61
3.3.2 Locations of the Antenna 63
3.3.3 Results 64
3.4 Measurements in Substation 2 65
3.4.1 Substation Presentation 65
3.4.2 Locations of the Antenna 66
3.4.3 Results 66
3.5 Classification of Impulsive Noise Characteristics 67
3.5.1 Amplitude 67
3.5.2 Impulse Duration 68
3.5.3 Repetition Rate 70
3.5.4 Sample Value 70
3.5.5 Representative Characteristics 71
3.6 An Experimental Characterization of the Discharge Sources 71
3.6.1 Amplitude of Measured Signals 72
3.6.2 Signal Processing Tools for Impulsive Noise Measurement 72
3.6.2.1 The Denoising Process 72
3.6.2.2 Short-Time Analysis for Impulsive Signals 73
3.6.2.3 Temporal Location of an Impulse 74
3.6.3 Characterization Based on First-Order Statistics 75
3.6.3.1 PRPD Representation 76
3.6.3.2 Statistical Distribution of PD Characteristics 77
3.6.4 Characterization Based on Second-Order Statistics 77
3.6.4.1 Typical Waveform and Spectrogram 79
3.6.4.2 Power Spectral Density 81
3.6.4.3 Power Spectral Density of an Impulse 81
3.6.4.4 Average Power Spectral Density 81
3.7 Representative Parameters for Classic Impulsive Noise Models 83
3.7.1 Bernoulli-Gaussian Model 83
3.7.2 Middleton Class-A Model 83
3.8 Conclusion 85
4 A Physical Model of EMI Induced by a Partial Discharge Source 87
4.1 Introduction 87
4.2 The Partial Discharge Phenomenon 88
4.3 The Physical Model of Partial Discharge Source 89
4.3.1 Electric Field Stress 89
4.3.2 Discharge Process 91
4.3.3 Current and Charge Density 93
4.4 The Electromagnetic Radiation of the Interference Source Induced by Partial Discharge 93
4.4.1 Electric Dipole formulation 94
4.4.2 Power Radiation of the Interference Source Received at the Antenna 95
4.4.3 Modeling Impulsive Waveforms and PSD 96
4.4.4 Brief Summary of Interference Induced by DischargeSource 96
4.5 Experimental Characterization Process of the Interference Source 98
4.5.1 Definition of Characterization Metrics 98
4.5.2 Denoising Process 98
4.5.3 Short-Time Analysis Process 98
4.6 Experimental Validation 99
4.6.1 Brief Description of Measurement Setup 99
4.6.1.1 The Measurement Setup 99
4.6.1.2 PD Sources from Stator Bar 99
4.6.2 Simulation Setup 100
4.6.2.1 Calculation of the Electric Field Along the Surface 100
4.6.2.2 Discharge Process in Air Cavity Parameters 101
4.6.2.3 Stochastic Property of the Emitted Radiations of PD Sources 103
4.6.3 Simulation-Measurement Comparison 103
4.6.3.1 PRPD Comparison 103
4.6.3.2 Statistical Distributions Comparison 104
4.6.3.3 PSD and Waveforms of Impulses 107
4.7 Conclusion 108
5 Analysis and Modeling of Wideband RF Signals Induced by PD Using Second-Order Statistics 110
5.1 Introduction 110
5.1.1 Main Contribution and Organization 111
5.2 Measurement Setup 112
5.3 Conjectures and Mathematical Formulation of EM Waves 112
5.3.1 Second-Order Statistics 112
5.3.1.1 Time-Frequency Analysis 112
5.3.1.2 Autocorrelation Function 113
5.3.1.3 Results from the Measurement Campaigns 113
5.3.2 A Physical Interpretation 114
5.4 The Proposed Model 115
5.4.1 Theory of Filters and Its Relationship with Time Series Models 115
5.4.2 Definition of the Time Series Model 116
5.4.3 Tests for Unit Roots 117
5.4.4 Estimation and Selection 119
5.5 The Goodness-of-Fit 120
5.5.1 Analysis of the Residuals 120
5.5.1.1 Residuals of Fitted ARMA(7,2) 121
5.5.1.2 Residuals of Fitted ARMA(4,1) 122
5.5.2 Tests for Heteroskedasticity 123
5.5.3 Analysis of the Residuals of the Improved Models 125
5.5.4 Summary 129
5.6 Simulation and Results 130
5.6.1 Simulation Parameters 130
5.6.2 A Comparison of Measurement vs. Simulation Results 130
5.6.3 Analysis of Simulated Impulsive Waveforms 131
5.6.4 Advantages and Limitations of the Proposed Model 132
5.7 Conclusion 133
6 Wideband Statistical Model for Substation Impulsive Noise 136
6.1 Introduction to PMC Model 136
6.2 Impulsive System and Oscillations 139
6.3 Damping Effect 143
6.4 Transition Matrix 143
6.5 Parameter Estimation 147
6.5.1 Fuzzy C-Means Algorithm 147
6.6 Results 149
6.6.1 Divergence Between Measurements and Models 150
6.6.2 Spectrum Analysis 153
6.7 Representative Parameters for PMC Model in Wide Band 154
6.8 Conclusions 155
7 Impulsive Noise in a Poisson Field of Interferers in Substations 158
7.1 Introduction 158
7.2 A Mathematical Formulation of Multiple PD Interference Sources 159
7.2.1 Electromagnetic Radiations of Multiple PD Sources 159
7.2.1.1 The Emission of the PD Impulses 159
7.2.1.2 Basic Assumptions of Spatial and Temporal PD Events 160
7.2.2 Propagation of EM Waves Induced by PD Sources 160
7.2.2.1 The Noise Process Observed by the Receiver 161
7.2.2.2 A Generic Temporal Impulsive Waveform from PD 161
7.2.2.3 The Attenuation Factor 162
7.2.3 Spatial and Temporal Distribution of PD Sources 162
7.3 Statistical Analysis 164
7.3.1 Probability Density Function 164
7.3.2 Probability Distribution 168
7.3.3 Tails and Moments 168
7.3.3.1 Moments of ?-Stable Distributions 169
7.3.3.2 Moments of Shot-Noise Processes 169
7.3.4 A Summary of Important Findings 170
7.4 Experimental and Simulation Results 171
7.4.1 Measurements in Substations 171
7.4.2 A Procedure for Estimation 172
7.4.3 Measurement-Simulation Comparison 173
7.4.3.1 First-Order Statistics 173
7.4.3.2 Second-Order Statistics 175
7.5 A Rapid Identification of PD Sources Using Blind Source Separation 177
7.5.1 Motivation 178
7.5.2 System Model 178
7.5.3 Blind Source Separation via Generalized Eigenvalue Decomposition 180
7.5.4 Simulation and Results 181
7.6 Conclusion 183
8 Conclusions 185
8.1 Monograph Summary 185
8.2 On the Practical Use of the EMI Models 188
References 191
Index 201

Erscheint lt. Verlag 8.6.2018
Reihe/Serie Wireless Networks
Zusatzinfo XXII, 187 p. 97 illus., 82 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte characterization • Corona effect • Correlated noise • Electromagnetic interferences (EMI) • High voltage substation • Impulsive noise • Markov Chain • Modeling • Partial discharge • physical model • Radio Frequency • Smart Grid • statistical model • Sub Stations • wireless communications
ISBN-10 3-319-91328-X / 331991328X
ISBN-13 978-3-319-91328-5 / 9783319913285
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99