Automatic Tuning of Compilers Using Machine Learning (eBook)

eBook Download: PDF
2017 | 1st ed. 2018
XVII, 118 Seiten
Springer International Publishing (Verlag)
978-3-319-71489-9 (ISBN)

Lese- und Medienproben

Automatic Tuning of Compilers Using Machine Learning - Amir H. Ashouri, Gianluca Palermo, John Cavazos, Cristina Silvano
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that, in fact, many of the available passes tend to counteract one another. After providing a comprehensive survey of currently available methodologies, including many experimental comparisons with state-of-the-art compiler frameworks, the book describes new approaches to solving the problem of selecting the best compiler optimizations and the phase-ordering problem, allowing readers to overcome the enormous complexity of choosing the right order of optimizations for each code segment in an application. As such, the book offers a valuable resource for a broad readership, including researchers interested in Computer Architecture, Electronic Design Automation and Machine Learning, as well as computer architects and compiler developers.

Background.- DSE Approach for Compiler Passes.- Addressing the Selection Problem of Passes using ML.- Intermediate Speedup Prediction for the Phase-ordering Problem.- Full-sequence Speedup Prediction for the Phase-ordering Problem.- Concluding Remarks. 

Erscheint lt. Verlag 22.12.2017
Reihe/Serie PoliMI SpringerBriefs
PoliMI SpringerBriefs
SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
Zusatzinfo XVII, 118 p. 23 illus., 6 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Auto-Tuning • Compiler Optimization • Design Space Exploration • Embedded computing • High Performance Computing • performance modeling • Software Characterization
ISBN-10 3-319-71489-9 / 3319714899
ISBN-13 978-3-319-71489-9 / 9783319714899
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43