Automatic Tuning of Compilers Using Machine Learning - Amir H. Ashouri, Gianluca Palermo, John Cavazos, Cristina Silvano

Automatic Tuning of Compilers Using Machine Learning

Buch | Softcover
XVII, 118 Seiten
2018 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-71488-2 (ISBN)
53,49 inkl. MwSt
This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that, in fact, many of the available passes tend to counteract one another. After providing a comprehensive survey of currently available methodologies, including many experimental comparisons with state-of-the-art compiler frameworks, the book describes new approaches to solving the problem of selecting the best compiler optimizations and the phase-ordering problem, allowing readers to overcome the enormous complexity of choosing the right order of optimizations for each code segment in an application. As such, the book offers a valuable resource for a broad readership, including researchers interested in Computer Architecture, Electronic Design Automation and Machine Learning, as well as computer architects and compiler developers.

Background.- DSE Approach for Compiler Passes.- Addressing the Selection Problem of Passes using ML.- Intermediate Speedup Prediction for the Phase-ordering Problem.- Full-sequence Speedup Prediction for the Phase-ordering Problem.- Concluding Remarks.

Erscheinungsdatum
Reihe/Serie PoliMI SpringerBriefs
SpringerBriefs in Applied Sciences and Technology
Zusatzinfo XVII, 118 p. 23 illus., 6 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 218 g
Themenwelt Informatik Theorie / Studium Compilerbau
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Auto-Tuning • Compiler Optimization • Design Space Exploration • Embedded computing • High Performance Computing • performance modeling • Software Characterization
ISBN-10 3-319-71488-0 / 3319714880
ISBN-13 978-3-319-71488-2 / 9783319714882
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Hanspeter Mössenböck

Buch | Softcover (2024)
dpunkt (Verlag)
29,90
a beginner's guide to learning llvm compiler tools and core …

von Kai Nacke

Buch | Softcover (2024)
Packt Publishing Limited (Verlag)
49,85