Für diesen Artikel ist leider kein Bild verfügbar.

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles

Buch | Softcover
546 Seiten
2018 | 3rd edition
CRC Press (Verlag)
978-1-138-74585-8 (ISBN)
62,30 inkl. MwSt
  • Titel wird leider nicht erscheinen
  • Artikel merken
The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). In explaining the design methodology of each drive train, design examples are presented with simulation results.
"This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles.

The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.”

—James Kirtley, Massachusetts Institute of Technology, USA

“The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.”

—Haiyan Henry Zhang, Purdue University, USA

“The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.”

—Christopher Donaghy-Sparg, Durham University, United Kingdom

The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included

• Chapters updated throughout the text.

• New homework problems, solutions, and examples.

• Includes two new chapters.

• Features accompanying MATLABTM software.

M. Ehsani is the Robert M. Kennedy Professor or Electrical engineering at Texas A&M University. From 1974 to 1981, he was a research engineer at the Fusion Research Center, University of Texas and with Argonne National Laboratory, Argonne, Illinois, as a Resident Research Associate. Since 1981, he has been at Texas A&M University, College Station, Texas where he is now an endowed professor of electrical engineering and Director of the Advanced Vehicle Systems Research Program and the Power Electronics and Motor Drives Laboratory. He is the author of over 400 publications in pulsed-power supplies, high-voltage engineering, power electronics, motor drives, advanced vehicle systems, and sustainable energy engineering. He is the recipient of several Prize Paper Awards from the IEEE-Industry Applications Society, as well as over 100 other international honors and recognitions, including the IEEE Vehicular Society 2001 Avant Garde Award for "Contributions to the theory and design of hybrid electric vehicles." In 2003, he was selected for the IEEE Undergraduate Teaching Award "For outstanding contributions to advanced curriculum development and teaching of power electronics and drives." In 2005, he was elected as the Fellow of Society of Automotive Engineers (SAE). He is the co-author of 17 books on power electronics, motor drives and advanced vehicle systems. He has over 30 granted or pending US and EU patents. His current research work is in power electronics, motor drives, hybrid vehicles and their control systems, and sustainable energy engineering. Dr. Ehsani has been a member of IEEE Power Electronics Society (PELS) AdCom, past Chairman of PELS Educational Affairs Committee, past Chairman of IEEE-IAS Industrial Power Converter Committee and past chairman of the IEEE Myron Zucker Student-Faculty Grant program. He was the General Chair of the IEEE Power Electronics Specialist Conference for 1990. He is the founder of IEEE Power and Propulsion Conference, the founding chairman of the IEEE VTS Vehicle Power and Propulsion and chairman of Convergence Fellowship Committees. In 2002 he was elected to the Board of Governors of VTS. He has also served on the editorial board of several technical journals and was the associate editor of IEEE Transactions on Industrial Electronics and IEEE Transactions on Vehicular Technology. He is a Life Fellow of IEEE, a past IEEE Industrial Electronics Society and Vehicular Technology Society Distinguished Speaker, IEEE Industry Applications Society and Power Engineering Society Distinguished Lecturer. He is also a registered professional engineer in the State of Texas. Yimin Gao received his B.S., M.S., and Ph.D. degrees in mechanical engineering (major in development, design, and manufacturing of automotive systems) in 1982, 1986, and 1991, respectively, all from Jilin University of Technology, Changchun, Jilin, China. From 1982 to 1983, he worked as a vehicle design engineer in DongFeng Motor Company, Shiyan, Hubei, China. He finished a layout design of a 5-ton truck (EQ144) and participated in prototyping and testing. From 1983 to 1986, he was a graduate student in Automotive Engineering College of Jilin University of Technology, Changchun, Jilin, China. His working field was improvement of vehicle fuel economy by optimal matching of engine and transmission. From 1987 to 1992, he was a Ph.D. student in the Automotive Engineering College of Jilin University of Technology, Changchun, Jilin, China. During this period, he worked on research and development of legged vehicles, which can potentially operate in harsh environments where mobility is difficult for wheeled vehicles. From 1991 to 1995, he was an associate professor and automotive design engineer in the Automotive Engineering College of Jilin University of Technology. In this period, he taught undergraduate students the course of Automotive Theory and Design several rounds and graduate students the course of Automotive Experiment Technique two rounds. Meanwhile, he also conducted vehicle performance, chassis, and components analysis, and conducted automotive design including chassis design, power train design, suspension design, steering system design, and brake design. He jointed the Advanced Vehicle Systems Research Program at Texas A&M University in 1995 as a research associate. Since then, he has been working in this program on research and development of electric and hybrid electric vehicles. His research areas are mainly on the fundamentals, architecture, control, modeling, design of electric and hybrid electric drive trains and major components. He is a member of SAE. Stefano Longo, after graduating in Electrical and Electronic Engineering, received his MSc in Control Systems from the University of Sheffield, UK, in 2007 and his PhD, also in Control Systems, from the University of Bristol, UK, in 2010. His PhD thesis was awarded the Institution of Engineering and Technology (IET) Control and Automation Prize for significant achievements in the area of control engineering. In 2010, he was appointed to the position of Research Associate at Imperial College London, UK, in the Control and Power Group within the Department of Electrical and Electronic Engineering, where he worked at the intersection of control systems design and hardware implementation. In 2012, he was appointed Lecturer (assistant professor) in Vehicle Electrical and Electronic Systems at Cranfield University, UK, within the Automotive Engineering department (now called the Advanced Vehicle Engineering Centre). From 2012 to 2016, he was also an Honorary Research Associate at Imperial College London. In 2017, Dr. Longo was promoted to the position of Senior Lecturer (Associate Professor) in Automotive Control and Optimization and he has been the Course Director for the MSc in Automotive Mechatronics since 2014. Dr. Longo has published over 70 peer-reviewed research articles and another book titled Optimal and Robust Scheduling for Networked Control Systems (CRC Press 2017). He teaches various postgraduate courses in automotive mechatronics, optimization and control, supervises PhD students, and conducts academic research and consultancy. Dr. Longo is a senior member of the IEEE, an associate editor of the Elsevier Journal on Mechatronics, a technical editor and reviewer for many IEEE and IFAC journals, a chartered engineer and elected executive member of the IET Control & Automation Network, a member of the IFAC technical committee on Mechatronic Systems and Automotive Control, and a fellow of the Higher Education Academy. Kambiz M Ebrahimi, Ph.D., received his BSc degree in mechanical engineering from Plymouth Polytechnic, UK, his M.Eng degree in systems engineering from UWIST, University of Wales, and his PhD in dynamics and mathematical modeling from Cardiff University, UK. Currently, he is professor of advanced propulsion in the aeronautical and automotive engineering department in Loughborough University, UK. Before joining Loughborough, he worked as a research assistant in the University of Wales working on model-based condition monitoring on a EU project and at the University of Bradford on distributed—lumped modeling and least effort control strategies. Subsequently, he became a lecturer, reader, and professor of mechanical engineering at the University of Bradford, UK. His main research interests are in systems and control theory; multivariable and largescale systems; modeling and characterization of mechatronic systems; energy management and control of hybrid power trains; system monitoring, fault diagnosis and turbomachinery tip-timing; hybrid, electric, L category vehicles. He is the author and co-author of more than 100 articles in national and international journals and conferences. He is a chartered mechanical engineer and member of ASME and SAE and the chair and organizer of Powertrain Modelling and Control Conference since 2012; a member of Editorial Board, International Journal of Powertrains, since 2012; and the Organizer of Meeting the Challenges in Powertrain Testing, in 2009. He is also a member of the Editorial Board for the Journal of Multibody Dynamics, Part K, Proceeding of IMechE, as well as the Co-Editor of: Application of Multi-Variable System Techniques, Professional Engineering Publishing, 1998. Co-Editor of: Multi Body Dynamics, Professional Engineering Publishing, 2000. He is actively involved in research collaboration with industry through contacts such as with AVL, Ford Motor Company, Cummins Turbocharger Technologies, Jaguar, and Land Rover.

Environmental Impact and History of Modern Transportation. Fundamentals of Vehicle Propulsion and Braking. Internal Combustion Engines. Vehicle Transmission. Electric Vehicles. Hybrid Electric Vehicles. Electric Propulsion Systems. Design Principle of Series (Electrical Coupling) Hybrid Electric Drivetrain. Parallel (Mechanically Coupled) Hybrid Electric Drivetrain Design. Design and Control Methodology of Series–Parallel (Torque and Speed Coupling) Hybrid Drivetrain. Design and Control Principles of Plug-In Hybrid Electric Vehicles. Mild Hybrid Electric Drivetrain Design. Peaking Power Sources and Energy Storage. Fundamentals of Regenerative Braking. Fuel Cells. Fuel Cell Hybrid Electric Drivetrain Design. Design of Series Hybrid Drivetrain for Off-Road Vehicles. Design of Full-Size-Engine HEV with Optimal Hybridization Ratio. Powertrain Optimization. User Guide for Multiobjective Optimization Toolbox.

Erscheint lt. Verlag 2.3.2018
Zusatzinfo 58 Tables, black and white; 17 Line drawings, color; 429 Line drawings, black and white
Verlagsort London
Sprache englisch
Maße 178 x 254 mm
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Fahrzeugbau / Schiffbau
ISBN-10 1-138-74585-5 / 1138745855
ISBN-13 978-1-138-74585-8 / 9781138745858
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
48,00