Anionic Polymerization (eBook)

Principles, Practice, Strength, Consequences and Applications
eBook Download: PDF
2015 | 1st ed. 2015
IX, 1082 Seiten
Springer Tokyo (Verlag)
978-4-431-54186-8 (ISBN)

Lese- und Medienproben

Anionic Polymerization -
Systemvoraussetzungen
309,23 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents these important facts: a) The mechanism of anionic polymerization, a more than 50-year challenge in polymer chemistry, has now become better understood; b) Precise synthesis of many polymers with novel architectures (triblock, multi-block, graft, exact graft, comb, cyclic, many armed stars with multi-components, dendrimer-like hyper-branched, and their structural mixed (co)polymers, etc.) have been advanced significantly; c) Based on such polymers, new morphological and self-organizing nano-objects and supra molecular assemblies have been created and widely studied and are considered nanodevices in the fields of nano science and technology; d) New high-tech and industrial applications for polymeric materials synthesized by anionic polymerization have been proposed. These remarkable developments have taken place in the last 15 years. Anionic polymerization continues to be the only truly living polymerization system (100 % termination free under appropriate conditions) and consequently the only one with unique capabilities in the synthesis of well-defined (i.e., precisely controlled molecular weight, nearly mono-disperse molecular weight distribution, structural and compositional homogeneity) complex macromolecular architectures. This book, with contributions from the world's leading specialists, will be useful for all researchers, including students, working in universities, in research organizations, and in industry.
This book presents these important facts: a) The mechanism of anionic polymerization, a more than 50-year challenge in polymer chemistry, has now become better understood; b) Precise synthesis of many polymers with novel architectures (triblock, multi-block, graft, exact graft, comb, cyclic, many armed stars with multi-components, dendrimer-like hyper-branched, and their structural mixed (co)polymers, etc.) have been advanced significantly; c) Based on such polymers, new morphological and self-organizing nano-objects and supra molecular assemblies have been created and widely studied and are considered nanodevices in the fields of nano science and technology; d) New high-tech and industrial applications for polymeric materials synthesized by anionic polymerization have been proposed. These remarkable developments have taken place in the last 15 years. Anionic polymerization continues to be the only truly living polymerization system (100 % termination free under appropriate conditions) and consequently the only one with unique capabilities in the synthesis of well-defined (i.e., precisely controlled molecular weight, nearly mono-disperse molecular weight distribution, structural and compositional homogeneity) complex macromolecular architectures. This book, with contributions from the world's leading specialists, will be useful for all researchers, including students, working in universities, in research organizations, and in industry.

Preface 6
Contents 8
Part I: Principles and Practice 11
Schlenk Techniques for Anionic Polymerization 12
1 Introduction 13
2 Different Component of Schlenk Techniques 14
2.1 Vacuum Pump 14
2.2 Inert Gases-Nitrogen (N2) or Argon (Ar) 14
2.3 Schlenk Line 15
2.4 Schlenk Flasks and Tubes 16
2.4.1 Specially Designed Schlenk Flasks and Storage Ampoules Using Septum Adaptors 16
2.4.2 Commercially Available Different Types of Schlenk Flasks and Tubes 17
3 Procedures 18
3.1 Degassing 18
3.2 Distillation 18
3.2.1 Simple Distillation of Solvents and Monomers 18
3.2.2 Short Path Distillation 19
3.3 Purification 20
3.3.1 Solvents 20
3.3.2 Monomers 22
3.4 Initiators Synthesis 23
3.4.1 Commercially Available 23
3.4.2 Triphenylmethylpotassium (TPMK) or Trityl potassium (Ph3CK) or Potasiumtriphenyl Methanide 24
3.4.3 1,1-Diphenylhexyllithium (DPHLi) 24
3.5 Examples of Polymerization 25
3.5.1 (Meth)acrylate Esters 25
3.5.2 Synthesis of Polystyrene-b-Polyisoprene Block Copolymer (PS-b-PI) 25
3.5.3 Polymerization Solid and Gaseous Monomers 26
References 26
High Vacuum Techniques for Anionic Polymerization 28
1 Introduction 28
1.1 Anionic Polymerization 28
1.1.1 Molecular Weight 29
1.1.2 Molecular Weight Distribution 29
1.1.3 Block Copolymers 30
1.1.4 Chain-End Functionalized Polymers 30
1.1.5 Star-Branched Polymers 31
1.2 General Aspects of Anionic Polymerization 31
1.2.1 Monomers 31
1.2.2 Initiators 32
1.3 High Vacuum Techniques for Anionic Polymerization 34
2 High Vacuum Techniques 35
2.1 Components 35
2.1.1 Vacuum Pump 35
2.1.2 High Vacuum Line 35
2.1.3 Diffusion Pump 37
2.1.4 Glass Cutter and Hand Torch 37
2.1.5 Constrictions and Break Seals 38
2.1.6 Tesla Coil 38
2.1.7 Liquid Nitrogen 39
2.2 Procedures 40
2.2.1 Degassing 40
2.2.2 Vacuum Distillation 40
Simple Distillation 40
Short Path Distillation 41
2.2.3 Dilution 42
2.2.4 Ampoulization 43
Simple or Basic Ampoulization 43
Large-Scale Ampoulization 44
Freeze Ampoulization 44
2.3 Polymerization 45
2.3.1 Initiator 45
Dilution of the Initiator with Hexane 47
2.3.2 Solvents 48
Solvent Storage 48
Solvent Purification 48
2.3.3 Monomers 50
2.3.4 Terminating (Deactivating) Agents 55
2.3.5 Polymerization Procedures in Nonpolar Solvents 57
Canadian Technique for the Synthesis of Linear Homopolymers, Block Copolymers, Star Homopolymers, and Star-Block Copolymers 57
Simple Technique 59
Synthesis of AB2 and AB3 Type 3- and 4-Miktoarm Star (mu-Star) Copolymers 60
Synthesis of Exact Comb Polymers 62
2.3.6 Polymerization Procedures in Polar Solvents 64
List of Abbreviations and Symbols 66
References 67
Nonpolar Monomers: Styrene and 1,3-Butadiene Derivatives 69
1 Introduction 70
2 Styrene Derivatives 75
2.1 Living Anionic Polymerization of Functional Styrene Derivatives 75
2.1.1 Alkyl- and Aryl-Substituted Styrene Derivatives 77
2.1.2 Alkenyl- and Alkynyl-Substituted Styrene Derivatives 77
2.1.3 Ether-, tert-Amine-, and Sulfide-Substituted Styrene Derivatives 81
2.1.4 Halostyrene Derivatives 82
2.1.5 Metal-Containing Styrene Derivatives 83
2.2 Protection and Living Anionic Polymerization of Functional Styrene Derivatives 85
2.2.1 Protective Strategy 85
2.2.2 Living Anionic Polymerization of Styrene Derivatives Including Benzyl Ether Skeletons 90
2.3 Living Anionic Polymerization of Functional Styrene Derivatives Substituted with Electron-Withdrawing Groups 96
3 1,3-Butadiene Derivatives 99
3.1 Alkyl- and Aryl-Substituted 1,3-Butadiene Derivatives 100
3.2 Amine-Substituted 1,3-Butadiene Derivatives 106
3.3 Silyl-Substituted 1,3-Butadiene Derivatives 108
3.4 Dialkylamide-Substituted 1,3-Butadiene Derivatives 112
3.5 [3]Dendralene Derivatives 113
4 Functional 1,1-Diphenylethylene Derivatives 115
5 Living Anionic Polymerization of Styrene and MMA: Purification and Practice 121
6 Conclusions 122
Abbreviations 125
References 126
Anionic Polymerization of Polar Vinyl Monomers: Vinylpyridines, (Meth)acrylates, (Meth)acrylamides, (Meth)acrylonitrile, Pheny... 135
1 Introduction 135
2 Anionic Polymerization of Vinylpyridines 137
3 Anionic Polymerization of (Meth)acrylates 140
3.1 Anionic Polymerization Behavior of (Meth)acrylates 140
3.2 Living Anionic Polymerization of (Meth)acrylates 142
3.3 Stereospecific Anionic Polymerization of Methacrylate Monomers 148
3.4 Anionic Polymerization of Functional Methacrylates 150
3.5 Anionic Polymerization of Methacrylates Carrying Protected Functional Groups 151
3.6 Synthesis of Water-Soluble Thermoresponsive Polymethacrylates by Anionic Polymerization 154
3.7 Anionic Block Copolymerization of (Meth)acrylates 156
4 Polymerization of (Meth)acrylamides 162
4.1 Polymerization of N,N-Dialkylacrylamides 162
4.2 Anionic Polymerization of Protected N-Isopropylacrylamide 168
4.3 Anionic Polymerization of N,N-Dialkylmethacrylamides 172
4.4 Anionic Polymerization of ?-Methylene-N-Methylpyrrolidone 177
5 Polymerization of (Meth)acrylonitrile 178
6 Polymerization of Phenyl Vinyl Sulfoxides 180
7 Anionic Polymerization of Dibenzofulvene and Benzofulvene 181
8 Polymerization of Other Polar Monomers 183
9 Conclusions 185
References 186
Cyclic Monomers: Epoxides, Lactide, Lactones, Lactams, Cyclic Silicon-Containing Monomers, Cyclic Carbonates, and Others 198
1 Introduction 198
2 Cyclic Ethers 199
2.1 Introduction 199
2.2 Conventional Anionic Polymerization of Epoxides 200
2.2.1 Ethylene Oxide 200
2.2.2 Monosubstituted Epoxides 202
2.3 Systems for Activated Epoxide Polymerization 202
2.3.1 Alkali Metal Derivatives Associated to Crown Ether 202
2.3.2 Aluminum Systems: From Bulky to Simpler Compounds 203
2.3.3 Calcium-Based Systems 208
2.4 Toward Organic Initiating Systems 208
2.4.1 Tertiary Amines 208
2.4.2 N-Heterocyclic Carbenes 209
2.4.3 Ammonium, Phosphonium, and Phosphazene Bases 210
2.5 Functionalization of Polyethers Prepared by Anionic Ring-Opening Polymerization 211
2.5.1 Polyethers with Hydroxyl Functions 212
2.5.2 Polyethers with Amine Functions 213
2.5.3 Polyethers with Alcene Functions 215
2.5.4 Polyethers with Azide Functions 215
2.5.5 Polyethers with Other Functions 216
3 Cyclic Esters 216
3.1 Introduction 216
3.2 Thermodynamics of Cyclic Esters Ring-Opening Polymerization 217
3.3 Lactide 217
3.3.1 Initiators with Alkali Metals 218
3.3.2 Organocatalyzed Polymerization 219
3.4 beta-Lactones 221
3.4.1 beta-Propio- or beta-Butyrolactone 221
Alkali Metal-Based Initiators 221
Organic Initiators 224
3.4.2 Other beta-Lactones 226
?,?-Disubstituted-beta-Propiolactones 226
beta-Substituted-beta-Lactones 226
3.5 Larger-Ring Lactones 227
3.5.1 epsi-Caprolactone and delta-Valerolactone 227
Polymerization Initiated with Alkali Metal Compounds 227
Organocatalyzed Polymerization 228
3.5.2 Other Lactones 229
4 Cyclic Amides (Lactams) 231
4.1 Introduction 231
4.2 Mechanism of the Anionic Polymerization of Lactams 232
4.2.1 Initiating and Activating Systems 232
4.2.2 Propagation Reaction 234
4.2.3 Side Reactions 237
Formation of Acyllactams, Amines, and Imides 237
Formation of beta-Ketoimides and beta-Ketoamides 237
Formation of Cyclic Oligomers 239
4.3 Anionic (Co)polymerization of epsi-Caprolactam and omega-Laurolactam 240
4.3.1 Homopolymerization of epsi-Caprolactam and omega-Laurolactam 240
4.3.2 Copolymerization of epsi-Caprolactam and omega-Laurolactam 241
4.3.3 Copolymerization of Lactams and Lactones 241
4.3.4 Polyamide-Based Copolymers with Non-polyamide Blocks 242
4.3.5 Industrial Processes Using AROP of epsi-Caprolactam and omega-Laurolactam 243
Powdered Polyamides 243
Molding and Extrusion 243
4.4 Anionic Polymerization of Other Lactams 244
4.4.1 beta-Lactams 244
4.4.2 2-Pyrrolidone 245
4.4.3 2-Piperidone 245
4.4.4 Bicyclic Lactams 246
5 Cyclosiloxanes and Other Cyclic Silicon-Based Compounds 246
5.1 Introduction 246
5.2 Cyclosiloxanes 247
5.2.1 Polymerization Generalities 247
5.2.2 AROP in Solid State and Emulsion 249
5.2.3 Copolymerization and Functionalization 250
5.3 Other Cyclic Organosilicon Monomers 251
5.3.1 Silsesquioxanes, Cyclic Carbosiloxanes, and Cyclic Silaethers 251
5.3.2 Cyclosilanes 252
5.3.3 Cyclocarbosilanes 252
5.3.4 Cyclosilazanes 253
5.3.5 Ferrocenylsilanes 254
6 Cyclic Carbonates 254
6.1 Introduction 254
6.2 5-Membered Cyclic Carbonates 254
6.3 6-Membered Cyclic Carbonates 256
6.4 Larger-Ring Cyclic Carbonates 262
7 Cycloalkanes, Cyclic Sulfides and Amines, Cyclic Ureas, Depsipeptides, and Cyclic Phosphorous Monomers 263
7.1 Introduction 263
7.2 Cycloalkanes 263
7.3 Cyclic Sulfides and Amines 264
7.4 Cyclic Ureas and Depsipeptides 266
7.5 Cyclic Phosphorus Monomers 267
8 Conclusion 269
Abbreviations 269
References 272
Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with... 313
1 Introduction 314
2 Polymerization Mechanisms 314
3 Polypeptide Materials with Various Molecular Architectures 320
4 Polypeptide-Based Hybrid Materials with Various Molecular Architectures 328
Abbreviations 340
References 340
Living Anionic Polymerization of Isocyanates 344
1 Introduction 344
2 Properties of Polyisocyanates 345
3 General Aspect of the Anionic Polymerization of Isocyanates 346
3.1 View on the Structural Tendency of Isocyanate Monomers 346
3.2 Mechanism of the Anionic Polymerization of Isocyanates 347
3.3 Main Cause of Degradation in Polyisocyanates 348
3.4 Effect of Counter Cation on Anionic Polymerization of Isocyanates 349
3.5 Effect of Temperature and Time on Anionic Polymerization of Isocyanates 351
4 Classical Anionic Polymerization of Isocyanates 352
5 Advanced Living Anionic Polymerization of Isocyanates 353
5.1 Addition of a Ligand Reagent: 15-Crown-5 (First Generation) 353
5.2 Addition of a Common Ion Salt: Sodium Tetraphenylborate (Second Generation) 354
5.3 Dual Functional Initiators (Third Generation) 357
6 Organotitanium(IV)-Catalyzed Coordination Polymerization of Isocyanates 361
7 End Functionalization of Polyisocyanates 363
7.1 ?-End Functionalization by Functional Initiators 363
7.2 omega-End Functionalization by Functional Terminators 365
7.3 Chain Middle-Functionalization by Difunctional Terminators 366
8 Synthesis of Side Chain-Functionalized Polyisocyanates 367
8.1 Synthesis of Polyisocyanates with Heteroatom Bond 367
8.2 Synthesis of Polyisocyanates with Active Hydrogen Side Group 368
8.3 Synthesis of Polyisocyanates with Reactive Side Group and Its Modification 370
9 Synthesis of Rod-Coil Block Copolymers of Isocyanates 372
9.1 Block Copolymerization by Sequential Monomer Addition 373
9.2 Block Copolymerization in Combination with Another Controlled Polymerization 374
10 Synthesis of Nonlinear Polyisocyanates 376
10.1 Synthesis of Star Polymers with Polyisocyanates 376
10.2 Synthesis of Graft Copolymers with Polyisocyanates 378
11 Development of Structural Studies in Well-Defined Polyisocyanates 380
11.1 Chiroptical Properties of Polyisocyanates 381
11.2 Morphology of Polyisocyanate-Based Rod-Coil Block Copolymers 382
12 Summary 383
Abbreviations 384
References 385
Poly(ferrocenylsilanes) with Controlled Macromolecular Architecture by Anionic Polymerization: Applications in Patterning and ... 392
1 Introduction 392
2 Poly(ferrocenylsilane) Synthesis 395
3 Reactive Ion Etching Barrier Properties of Poly(ferrocenylsilanes) 399
4 Poly(ferrocenylsilane) Homopolymers in Lithography Applications 402
4.1 Solvent-Assisted Microcontact Printing 403
4.2 Capillary Force Lithography 404
4.3 Thermal and UV-Assisted Nanoimprint Lithography 406
4.4 Nanosphere-Assisted Lithography 407
5 Poly(ferrocenylsilane)-Based Block Copolymers in ``Maskless´´ Nanolithography Applications 409
5.1 Block Copolymer Microphase Separation 409
5.2 Block Copolymer Thin Films as Nanolithographic Templates 412
5.3 Nanostructures with Long-Range Guided Order Using Block Copolymer Lithography 416
6 Conclusion 423
Abbreviations 424
References 425
Polymerization Using Phosphazene Bases 433
1 Introduction 434
2 Polymerization Reactions 435
2.1 Polymerization with Protonated Phosphazene Bases 435
2.2 Polymerization with Lithiated Phosphazene Bases 437
2.3 Polymerization with Non-protonated Phosphazenium Cations 439
3 Macromolecular Engineering 440
3.1 Functional Polymers 440
3.2 Block Copolymers 442
3.3 Graft Copolymers 444
3.4 Star-Shaped Polymers 446
3.5 Hyperbranched Polymers 447
4 Summary 448
Abbreviations 449
References 449
Group Transfer Polymerization of Acrylic Monomers 454
1 Introduction 454
2 Lewis-Base-Catalyzed GTP 456
2.1 Overview 456
2.2 Mechanisms of Lewis-Base-Catalyzed GTP 460
2.3 Trimethylsilyl Bifluoride, Hydrogen Bifluoride, and Fluoride 462
2.4 Azide and Cyanide 463
2.5 Oxyanions and Hydrogen Bioxyanions 463
2.6 N-Heterocyclic Carbenes 464
2.7 Organic Strong Bases 464
2.8 Phosphines 465
3 Lewis-Acid-Catalyzed GTP 466
3.1 Overview 466
3.2 Zinc Halides and Zinc Triflates 467
3.3 Organoaluminums 469
3.4 Mercury(II) Iodide with Trialkylsilyl Iodide 469
3.5 Other Metallic Catalysts 470
3.6 B(C6F5)3 with Silylating Agents 471
3.7 Triphenylmethyl Salts 471
3.8 Organic Strong Acids 475
4 Precise Synthesis of Polymer Architectures 479
4.1 End-Functionalized Polymers 479
4.1.1 GTP Using Functional Initiators 479
4.1.2 GTP Using Terminating Agents 481
4.2 Block Copolymers 482
4.3 Star-Shaped Polymers 484
4.4 Hyperbranched Polymers 487
5 Conclusion and Outlook 488
Abbreviations 489
References 490
Surface-Initiated Anionic Polymerization from Nanomaterials 498
1 Introduction 498
1.1 Necessity for Surface Modification of Nanomaterials 499
1.2 Surface-Initiated Polymerization 500
2 Surface-Initiated Anionic Polymerization from Inorganic Surfaces 502
2.1 Anionic Polymerization from Gold Surface 503
2.2 Anionic Polymerization from Clay Surface 509
2.3 Anionic Polymerization from Silicon Oxide Particles and Substrates 510
3 Surface-Initiated Anionic Polymerization from Organic Surfaces 514
3.1 Anionic Polymerization from Graphitic Carbon Nanomaterials 515
3.2 Anionic Polymerization from Carbon Nanotubes 517
3.3 Anionic Ring-Opening Polymerizations from Carbon Nanotubes 522
3.3.1 Polyesters 522
3.3.2 Polyethers 527
3.3.3 Poly(peptides) and Polyamides 531
3.4 Anionic Polymerization from Cross-Linked PS 532
4 Conclusion 533
Abbreviations 534
References 536
Part II: Strength: Precise Synthesis of Well-Defined Architectural Polymers 541
Block Copolymers by Anionic Polymerization: Recent Synthetic Routes and Developments 542
1 Introduction 542
2 General Synthetic Strategies for the Synthesis of Linear Block Copolymers 543
2.1 AB Diblock Copolymers 543
2.2 ABA Triblock Copolymers 544
2.3 ABC Triblock Terpolymers 545
2.4 Multiblock Copolymers 546
2.5 Block Copolymers by the Post-polymerization Formation of Metal Complexes 546
3 Block Copolymers from Nonpolar Monomers 547
4 Block Copolymers from Polar Monomers 552
4.1 (Meth)acrylates 552
4.2 Vinyl Pyridines 567
4.3 Other Polar Monomers 574
5 Block Copolymers from Cyclic Monomers 579
5.1 Hexamethylcyclotrisiloxane 579
5.2 Ethylene Oxide 582
5.3 Other Epoxy Monomers 591
6 Block Copolymers from Alkyl Isocyanates 595
7 Block Copolymers from Metal-Containing Monomers 598
7.1 Polyferrocenosilanes (PFSs) and Their Block Copolymers 601
7.2 Phosphorus-Bridged Ferrocenes 605
7.3 Germanium-Bridged Ferrocenes 605
7.4 Side-Functional Ferrocene Monomers 606
Abbreviations 607
References 610
Graft and Comblike Polymers 625
1 Introduction 625
2 General Aspects of Graft Copolymer Synthesis 626
2.1 Grafting Onto 629
2.2 Grafting From 633
2.3 Grafting Through (The Conventional Macromonomer Approach) 637
3 More Advanced Methods to Achieve Graft Copolymers with Superior Control of Macromolecular Architecture 640
3.1 The Chlorosilane Macromonomer Polycondensation Approach 641
3.2 Exact Graft Copolymers 643
4 Characterization 646
4.1 Molecular Weight Determination of Graft Copolymers 646
4.2 Morphology and Mechanical Properties of Graft Copolymers 647
5 Conclusions and Future Prospects 650
References 651
Star-Branched Polymers (Star Polymers) 659
1 Introduction 660
2 Regular Star Polymers 661
2.1 Regular Star Polymers Synthesized Until the 1990s 661
2.2 Arm-First Termination Methodology Using Multifunctional Chlorosilane Reaction Site 665
2.3 Arm-First Termination Methodology Using BnBr Reaction Site 667
2.4 Arm-First Termination Methodology Using DPE Reaction Site 670
3 Asymmetric Star Polymers 673
3.1 Methodology Using Chlorosilane Reaction Site 674
3.2 Methodology Using Dual-Functionalized Reaction Sites 676
3.3 Methodologies Based on Iterative Strategy 682
3.3.1 Iterative Methodologies Using DPE Reaction Site 682
3.3.2 Iterative Methodology Using 2-Alkyl-1,3-Butadiene Reaction Site 688
3.3.3 Iterative Methodologies Using ?-Phenylacrylate Reaction Site 689
3.3.4 Iterative Methodologies Using Intermediate Polymer Anions 694
3.3.5 Iterative Methodologies Using BnBr Reaction Site 697
4 mu-Star Polymers Composed of Random Coil and Rigid Segments 704
5 Conclusions 709
Abbreviations 710
References 711
Synthesis of Dendrimer-Like Polymers 719
1 Introduction 719
2 Synthetic Methodology 720
2.1 Divergent Chain Growing/Branching Approach 721
2.1.1 PEO-Based Dendrimer-Like Polymers 721
2.1.2 PS-Based Dendrimer-Like Polymers 725
2.1.3 PCL-Based Dendrimer-Like Polymers 726
2.1.4 PMMA-Based Dendrimer-Like Polymers 728
2.1.5 Living Dendrimer-Like Polymers Made from a Continuous Method 730
2.2 Divergent Coupling/Branching Approach 732
2.2.1 Dendrimer-Like Star Polymethacrylates 732
2.2.2 Dendrimer-Like Star Polystyrenes 736
2.2.3 Dendrimer-Like Star Poly(tert-butyl methacrylates)s (PtBMAs) 740
2.3 Convergent Approach 742
3 Concluding Remarks 747
References 748
Complex Branched Polymers 753
1 Complex Macromolecular Architectures 753
2 omega-Branched Polymers 754
3 ?,omega-Branched Polymers 756
4 Block-Graft Copolymers 765
5 Comb-Like Complex Macromolecular Architectures 767
6 Dendritic-Like Complex Macromolecular Architectures 778
Abbreviations 799
References 800
Block Copolymers Containing Polythiophene Segments 804
1 Introduction 805
2 Precise Synthesis of Polythiophenes 806
3 Rod-Rod Type Block Copolymer 809
4 Precise Synthesis of Chain-End-Functionalized Polythiophenes 813
5 Precise Synthesis of Rod-Coil and Coil-Rod-Coil Block Copolymers Containing Polythiophene Segments 815
5.1 Combination of KCTP and Living/Controlled Radical Polymerization 815
5.2 Combination of KCTP and Living Anionic Polymerization 817
6 Preparation of Nanoporous P3HT Films 822
7 Polymer Solar Cell Application 824
7.1 Use of Block Copolymers 825
7.2 New Polythiophene Derivatives 829
8 Concluding Remarks 831
Abbreviations 831
References 832
Part III: Consequences: Morphologies and Self-Assembled Hierarchical Structures 840
Block Copolymers and Miktoarm Star-Branched Polymers 841
1 Phase Behavior of Diblock Copolymers 842
2 Analysis of Microdomain Structures 847
3 Linear ABC Triblock Terpolymers 850
4 ABC Miktoarm Star Terpolymers 852
Abbreviations 855
References 856
Control of Surface Structure and Dynamics of Polymers Based on Precision Synthesis 858
1 Enhanced Surface Mobility 858
1.1 General Remarks 858
1.2 Effect of Synthetic Method 859
1.3 Chain End Chemistry 860
2 Surface Segregation in Polymer Blends 862
2.1 General Remarks 862
2.2 Surface Segregation 862
2.3 Chain End Chemistry 864
3 Interfacial Chain Conformation 866
3.1 General Remarks 866
3.2 Surface Conformation 866
3.3 Interfacial Conformation at Water Interface 868
4 Water Structure Induced by Polymer Interface 869
4.1 General Remarks 869
4.2 Water Structure at PMMA Interface 870
4.3 Effect of Water Structure at PMMA Interface 871
5 Concluding Remarks 872
Abbreviations 873
References 874
Block Copolymers as Antifouling and Fouling Resistant Coatings 878
1 Introduction 878
2 Classes of Block Copolymer Coatings 880
2.1 Hydrophobic Surfaces 881
2.2 Hydrophilic Surfaces 882
2.3 Amphiphilic and Mixed Surface Block Copolymers 882
2.4 Quaternary Ammonium Surfaces 883
3 Algae and Diatom Antifouling and Fouling Release Assays 883
4 General Coating Strategies 885
5 Hyperbranched Polymer Structures 886
6 Single Component Surfaces 889
6.1 Block Copolymers as Versatile Coatings (Fig.6) 889
6.2 Monodendron Nonpolar Side Groups 895
7 Block Copolymers with Amphiphilic Brushes 897
7.1 Method for Preparing Side Groups for the Polystyrene-Block-Poly(ethylene-ran-butylene)-Block-Polyisoprene (PS-b-P(E/B)-b-P... 900
8 Block Copolymers with Randomly Mixed Polar and Nonpolar Side Groups 903
9 Cationically Charged Surfaces 909
9.1 Polymer-Bound Quaternary Ammonium Cations as Antibacterial and Antifouling Surfaces 910
10 Summary 914
Abbreviations 915
References 915
Micellar Structures from Anionically Synthesized Block Copolymers 922
1 Introduction 922
2 Generalities About Block Copolymer Micelles 924
2.1 The Critical Micelle Concentration 924
2.2 Preparation of Block Copolymer Micelles 926
2.3 Micellar Structure 927
2.4 Characterization of Block Copolymer Micelles: Experimental Techniques 928
2.5 Dynamics of Block Copolymer Micelles 931
3 Control of Morphology and Micellar Sizes 933
4 Micelles from Anionically Synthesized Diblock Copolymers in Organic Solvents 939
5 Micelles from Anionically Synthesized Diblock Copolymers in Aqueous Solution 941
5.1 Nonionic Amphiphilic Diblock Copolymers in Aqueous Solution 941
5.2 Amphiphilic Diblock Copolymers with One Ionic Block in Aqueous Solution 942
5.3 Double-Hydrophilic Diblock Copolymers in Aqueous Solution 944
6 Micelles from Anionically Synthesized Triblock Copolymers 946
6.1 Micelles with a Compartmentalized Core 946
6.2 Micelles with a Compartmentalized Corona 951
7 Micelles Obtained by Mixing Anionically Synthesized Block Copolymers 954
8 Conclusions and Outlook 958
Abbreviations and Symbols 959
References 960
Part IV: Applications 970
Block Polymers for Self-Assembling: Lithographic Materials 971
1 Introduction 971
2 Synthesis of POSS-Containing BCPs 973
2.1 Living Anionic Polymerization 973
2.2 Atom Transfer Radical Polymerization (ATRP) 975
3 Morphologies of BCPs in Bulk and Thin Films 975
3.1 Bulk Morphology 975
3.2 Thin Film Morphology 978
3.2.1 Solvent Annealing 978
3.2.2 Thermal Annealing 987
3.2.3 Rapid and Reversible Morphology Changes by Solvent and Thermal Annealing 989
4 Directed Self-Assembly (DSA) 992
5 Pattern Transfer 1001
6 Summary and Outlook 1001
References 1003
Methacrylate-Based Polymers for Industrial Uses 1007
1 Introduction 1007
2 History 1008
3 Anionic Polymerization of (Meth)acrylate Monomers 1008
3.1 KURARAY´s Living Anionic Technology (LA System) 1009
3.2 Kinetic Studies of LA System 1010
3.3 Stereoregularity and Crystallization of Poly(n-Butyl Acrylate) (PnBA) 1013
3.4 Initiator and Block Copolymerization with 1,3-Diene Monomers 1013
4 Characteristics of Acrylic Block Copolymers Produced Using the LA System 1014
4.1 Morphologies 1015
4.2 Flow Properties 1016
4.3 Dynamic Mechanical Properties 1018
4.4 Durability 1018
5 Industrial Applications of ``KURARITY´´ 1018
5.1 Controlling the Modulus 1021
5.2 Compounding 1022
5.3 Film 1023
5.4 Adhesive 1023
6 Conclusion 1025
Abbreviations 1025
References 1026
The Critical Role of Anionic Polymerization for Advances in the Physics of Polyolefins 1028
1 Importance of Polyolefins 1028
2 Chain Dimensions 1030
2.1 Measurement of Chain Dimensions in the Melt 1030
2.2 Chain Dimensions and the Packing Length 1032
2.3 Models of Chain Dimensions 1033
3 Miscibility 1036
3.1 Polyolefin Blends Thermodynamics 1036
3.2 Summary of Polyolefin Miscibility Data 1036
3.3 Dependence of Polyolefin Solubility Parameters on Packing Length 1039
3.4 Applications of Polyolefin Blend Thermodynamics 1042
4 Rheology of Linear Polyolefin Chains 1043
4.1 Entanglement Density and the Packing Length 1043
4.2 Other Rheological Properties 1045
4.3 Applications of Linear Polyolefin Rheology 1046
5 Polyolefins and Long-Chain Branching 1047
5.1 LCB in Polyethylene 1047
5.2 Effects of LCB on Chain Dimensions 1050
5.3 Effects of LCB on Melt Rheology 1054
6 Future Areas of Study 1063
References 1064
Part V: Future Remarks 1073
Future Remarks 1074

Erscheint lt. Verlag 1.9.2015
Zusatzinfo IX, 1082 p. 817 illus., 127 illus. in color.
Verlagsort Tokyo
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Chemie Physikalische Chemie
Technik Maschinenbau
Schlagworte Anionic Polymerization • block copolymers • Complex Macromolecular Architectures • Cyclic Monomers • Morphological Self-organized Nanomaterial • Nano-objects • Non-polar Monomers • Polar Monomers • Polymerization • Polyolefins
ISBN-10 4-431-54186-1 / 4431541861
ISBN-13 978-4-431-54186-8 / 9784431541868
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 30,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99