Smart Intelligent Aircraft Structures (SARISTU) (eBook)

Proceedings of the Final Project Conference
eBook Download: PDF
2015 | 1st ed. 2016
XXVIII, 1039 Seiten
Springer International Publishing (Verlag)
978-3-319-22413-8 (ISBN)

Lese- und Medienproben

Smart Intelligent Aircraft Structures (SARISTU) -
Systemvoraussetzungen
309,23 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book includes the research papers presented in the final conference of the EU funded SARISTU (Smart Intelligent Aircraft Structures) project, held at Moscow, Russia between 19-21 of May 2015. The SARISTU project, which was launched in September 2011, developed and tested a variety of individual applications as well as their combinations.

With a strong focus on actual physical integration and subsequent material and structural testing, SARISTU has been responsible for important progress on the route to industrialization of structure integrated functionalities such as Conformal Morphing, Structural Health Monitoring and Nanocomposites.

The gap- and edge-free deformation of aerodynamic surfaces known as conformal morphing has gained previously unrealized capabilities such as inherent de-icing, erosion protection and lightning strike protection, while at the same time the technological risk has been greatly reduced. Individual structural health monitoring techniques can now be applied at the part-manufacturing level rather than via extending an aircraft's time in the final assembly line. And nanocomposites no longer lose their improved properties when trying to upscale from neat resin testing to full laminate testing at element level.

As such, this book familiarizes the reader with the most significant develo

pments, achievements and key technological steps which have been made possible through the four-year long cooperation of 64 leading entities from 16 different countries with the financial support of the European Commission.

Foreword 6
Acknowledgments 8
Contents 10
Contributors 18
1 SARISTU: Six Years of Project Management 28
Abstract 28
1 Introduction 29
2 Fundamental Rules Applied to Project Initiation, Preparation, Negotiation and Conduct 31
3 Effects of Fundamental Rules Applied 44
4 Major Lessons Learned in Project Management 64
5 Conclusions 66
Acknowledgments 66
References 67
Books 67
Other: Call Documentation & Guidelines for Reporting
Other: Project documents and Training documentation 67
Part ITechnology Stream: Morphing.Enhanced Adaptive Droop Nosefor a Morphing Wing 68
Introduction and Overview 68
2 Morphing Wing Integrated Safety Approach and Results 69
Abstract 69
1 Introduction 71
2 Safety Analysis Approach Overview 72
3 Functional Approach Definition 73
4 Dual-Level Safety Assessment: IS12 and AS0x FHAs and FTAs 77
4.1 Functional Hazard Assessment General Overview 77
4.2 SARISTU Functional Hazard Assessment Peculiarity 78
4.3 SARISTU Functional Hazard Assessment Harmonization and FTA Basis 82
4.4 System Safety Assessment---Fault Tree Analysis 85
4.4.1 Assumptions---Principles 87
4.4.2 Active Versus Hidden Failures---Time Parameters 87
4.4.3 On Safety Factor 88
5 Catastrophic Failure Condition: Example of Integrated Safety Analysis 89
6 Common Cause Analyses (PRA, ZSA, CMA) 91
7 Conclusion 93
Acknowledgments 94
References 94
Standard regulations and practices 94
SARISTU project documents 95
Other documents/papers 95
3 Development and Validation of a Bird Strike Protection System for an Enhanced Adaptive Droop Nose 96
Abstract 96
1 Introduction 97
2 Frame of the Study, Impact Parameters 97
3 Design Loop for Determination of BSPS Concepts 98
4 BST Specimens 99
5 BST Virtual and Experimental Results 100
5.1 Shot 1 Results 103
5.2 Shot 2 Results 103
5.3 Shot 3 Results 105
5.4 Shot 4 Results 106
6 Conclusion 107
Acknowledgments 108
Reference 108
4 Testing Overview of the EADN Samples 109
Abstract 109
1 Introduction 109
2 Test Articles of Leading Edges 110
2.1 Leading Edge for Wind Tunnel Tests 110
2.2 Ground Tests 115
2.3 Bird Strike Test 118
3 Conclusion 119
Acknowledgments 119
References 120
5 Enhanced Adaptive Droop Nose---from Computer Model to Multi-functional Integrated Part 121
Abstract 121
1 Introduction 122
2 Investigation of Multi-material and Functionally Integrated Material 122
2.1 Material Specimen 124
3 Integration Specimen 124
3.1 Surface Protection Integration 124
3.2 Deicing Integration 126
3.3 Stringer Integration 127
3.4 Lightning Strike Protection 128
4 Development of a New Tooling Concept 129
4.1 Detailed Morphing Skin Design 129
4.2 Bracket Design 130
5 Tool Design 131
5.1 Test Tool and Results of Trial Runs 132
6 Prototype Manufacturing 132
7 Conclusion and Further Procedure 135
Acknowledgments 135
References 135
6 Assessment of the SARISTU Enhanced Adaptive Droop Nose 136
Abstract 136
1 Introduction 137
2 Design Concept and Integration 138
3 Morphing Skin 140
4 Kinematic Concept 144
4.1 Introduction 144
4.2 Numerical Optimization 145
4.3 Geometrical Construction Method 147
4.4 Mechanical Design 150
4.5 Weight Estimation and Comparison with Previous Design 155
5 Technology Assessment 157
5.1 Introduction 157
5.2 Assessment Platform 158
5.3 Integration of the EADN 158
5.4 Aircraft Models for Comparison 158
5.4.1 Fully Turbulent Baseline Model 158
5.4.2 Non-Morphing Reference Model 159
5.4.3 Transition Determined Model 159
5.4.4 EADN Model 159
5.5 Comparison Results 160
6 Conclusion 160
Acknowledgments 162
References 162
Part IITechnology Stream: Morphing.The Adaptive Trailing EdgeDevice (ATED) 164
Introduction and Overview 164
7 Adaptive Trailing Edge: Specifications, Aerodynamics, and Exploitation 166
Abstract 166
1 Introduction 167
2 Specification 168
2.1 A/C and Wing Reference Configurations 168
2.2 Aerodynamic Shapes Design of Morphing Devices 169
2.3 Aerostructural Shape Optimization 170
2.4 Morphing Trailing Edge 171
3 Aerodynamic Final Performance Analysis and Results of ATE 174
4 Exploitation to Business Jet A/C Configuration 177
5 Conclusion 180
Acknowledgments 181
References 181
8 Structural Design of an Adaptive Wing Trailing Edge for Large Aeroplanes 182
Abstract 182
1 Introduction: General Requirements and ATE Structural Concept 183
2 ATE Stress Analyses 187
3 Aeroelastic Investigations 188
4 Conclusions 191
References 192
9 Distributed Actuation and Control of a Morphing Wing Trailing Edge 194
Abstract 194
1 Introduction 195
1.1 Distributed ServoElectromechanical Actuation 196
2 Morphing Trailing Edge Actuation 197
2.1 Actuator Selection and Layout 199
3 Control Logic 202
4 Results 203
5 Conclusions and Future Developments 206
References 208
10 Elastomer-Based Skin for Seamless Morphing of Adaptive Wings 210
Abstract 210
1 Introduction 211
2 Morphing Skin Design 211
3 Low-Temperature Elastomers 213
4 Mechanical Properties 216
5 Skin Manufacturing 217
6 Conclusions 219
Acknowledgments 220
Reference 220
11 Manufacturing and Testing of Smart Morphing SARISTU Trailing Edge 221
Abstract 221
1 Introduction 222
2 Manufacturing 222
3 Assembly 225
3.1 Internal Structure Assembly 225
3.2 Milling 225
3.3 Sensor and Cable Installation 226
3.4 Lower Skin Assembly 227
4 Test Campaign 227
4.1 Test Definition 227
4.2 Test Setup 227
4.2.1 Boundary Conditions 227
4.2.2 Control Conditions 228
4.2.3 Aerodynamic Load Application 228
4.2.4 Measuring Results 228
4.3 Test Results 230
4.3.1 Modal Analysis---Free--Free Boundary Conditions 230
4.3.2 Modal Analysis---Clamped Conditions and Feedback Control 230
4.3.3 Static Analysis---Feed-Forward Controls 232
4.3.4 Static Analysis---Skin Bubbling Effect 232
5 Conclusion 236
Acknowledgments 237
References 237
Part IIITechnology Stream: Morphing.Wingtip Morphing Trailing Edge 238
Introduction and Overview 238
12 Design, Optimization, Testing, Verification, and Validation of the Wingtip Active Trailing Edge 239
Abstract 239
1 Introduction 241
2 Winglet Design Considering Multiobjective Design Criteria 242
2.1 Winglet Shape Optimization 244
2.2 Actuator and Kinematics Integration 248
2.3 Failure Hazard Assessment, System Safety Assessment, and Factors of Safety Used for Structural Sizing 250
2.4 Overall Control System Layout 257
3 WATE Manufacturing and Assembly 258
3.1 Composite Structure Components Manufacturing 259
3.2 Winglet Assembly 262
4 WATE Testing 264
4.1 Ground Vibration Test 264
4.2 Ground Static Test 266
4.3 Functional Test 267
5 Winglet Integration in Wing Demonstrator 272
6 Conclusion 273
Acknowledgments 274
References 274
13 Winglet Design, Manufacturing, and Testing 276
Abstract 276
1 Introduction 277
2 WATE Manufacturing and Assembly 278
2.1 Composite Structure Component Manufacturing 279
2.2 Winglet Assembly 284
2.3 Winglet Testing 287
2.4 Winglet Integration in Wing Demonstrator 290
3 Conclusion 292
Acknowledgments 292
Reference 292
14 Seamless Morphing Concepts for Smart Aircraft Wing Tip 293
Abstract 293
1 Introduction 294
2 Design 295
3 Mechanical Properties of Hyperflex-03 298
4 Fatigue Properties of an Adaptive Part 301
5 Prototype Fatigue Tests 303
6 Conclusion 308
Acknowledgments 308
References 308
15 Dynamic Aircraft Model with Active Winglet, Effects of Flight Mechanics and Loads Analysis 310
Abstract 310
1 Introduction 311
2 SARISTU Aircraft Loads Model 313
2.1 Wing Loads Model 313
2.2 Loads Analysis of Wing--Winglet Interface 317
2.3 Flutter Consideration 318
2.4 Reconstruction of SARISTU Aircraft 319
3 Aeroservoelastic Model for Gust Load Alleviation Design 321
3.1 Modelling of Rigid Body Modes and Control Surfaces 322
3.2 Aerodynamic Data 322
3.3 Output Model 325
4 State-Space Model of the SARISTU Aircraft 327
4.1 Structural Model 327
4.2 Aerodynamic Loads 328
4.3 Control Surfaces 330
4.4 Gusts 331
4.5 Verification Cases 332
4.6 Application for Gust Load Alleviation Design and Analysis 333
5 Concluding Remarks 334
Acknowledgments 335
References 335
16 Influence of H2 and {{{/cal L}}}_{/infty } Criteria on Feed-Forward Gust Loads Control Optimized for the Minimization of Wing Box Structural Mass on an Aircraft with Active Winglets 336
Abstract 336
1 Introduction 337
2 Synthesis Model 338
3 Gust Load Controller Optimization 339
3.1 Mixed H2/ {{{/cal L}}}_{/infty } Optimization of Feed-Forward Gust Loads Controller 341
3.2 Pure H2-Optimization of Feed-Forward Gust Loads Controller 343
3.3 Performance Comparison 344
4 Conclusion 347
Acknowledgments 347
References 347
17 Evaluation of the Performance Benefits of the Winglet Active Trailing Edge in AS03 349
Abstract 349
1 Introduction 350
2 Effect of WATE Lift-to-Drag Ratio Improvements on Fuel Burn 351
3 Effect on Structural Mass Reduction Due to WATE 353
4 General Study on the Benefits of Winglets 354
5 Fleet Fuel Savings 356
6 Comparison of WATE Installation Technologies 357
7 Low-Speed Performance 358
8 Summary of Opportunities and Risks 358
9 Conclusions 360
Acknowledgement 360
Associated SARISTU Documents 361
References 361
Part IVTechnology Stream: IntegratedSensing. Fiber Optic-BasedMonitoring System 362
Introduction and Overview 362
18 Ribbon Tapes, Shape Sensors, and Hardware 364
Abstract 364
1 Introduction 366
2 Ribbon Tape Development 367
2.1 Goal 367
2.2 Ribbon Tape Requirements 367
2.3 Ribbon Tape Production Methods 367
2.3.1 Trapped Rubber Mold 368
2.3.2 Compression Molding 368
2.3.3 Continues Rolling Process 368
2.3.4 Vacuum Bag in Autoclave/Oven 369
2.4 Optimized Production Process 370
2.5 Material Selection 371
2.6 Ribbon Tape Removal Tests 372
3 FORT Mounting Processes on a Composite Structure 372
3.1 Secondary Bonding Procedure 374
3.2 Co-Bonding Procedure 375
4 Reliability of FORTs for Strain Sensing in Composite Structures 378
4.1 Room Temperature Fatigue Tests 378
4.2 High- and Low-Temperature Fatigue Tests 382
5 Connector Casing Development 387
5.1 Goal 387
5.2 Connector Casing Requirements 388
5.3 Material Selection 389
5.3.1 Material Trade-off 390
5.3.2 Processing Tests 391
5.4 Connector Casing Design 392
5.4.1 Assembly Procedure Connector Casing 393
5.5 Ribbon Tape Repair Principle 394
5.5.1 Secondary Bonding of Ribbon Tape 395
5.5.2 Testing the Repair Principle 396
5.6 Final Design Connector Casing 396
5.6.1 Processing Test 397
5.7 Final Ribbon Tape Design 397
5.8 Connector Usage Within the SARISTU Project 397
6 Ribbon Tape Qualification 398
6.1 Objective 398
6.2 Experimental Description 399
6.3 Results and Discussion 400
6.3.1 Evaluation of Ribbon Tape Accuracy 400
6.3.2 Evaluation of Bonding Integrity 400
7 Shape Sensors 403
7.1 Goal 403
7.2 Shape Sensor Requirements 404
7.3 Material Selection 404
7.4 Manufacturing and Implementation Process 405
7.4.1 Shape Sensor Manufacturing Parts 405
7.4.2 Shape Sensor Assembly Implementation Procedure 406
8 Hardware 408
8.1 Fiber Bragg Gratings 408
8.2 System Overview 410
8.3 FBG Interrogator: Deminsys 411
8.3.1 General Specifications for the Deminsys 411
8.3.2 Synchronization 412
8.3.3 Settings 412
8.3.4 The Output of the Deminsys 412
8.3.5 Airborne Compatibility of the Deminsys System 413
8.4 Next-Generation FBG Interrogator Devices 413
9 Methods to Evaluate the Integrity of Ribbon Tapes 414
9.1 Experimental Evaluation 416
9.2 Panel Specimen Description 416
9.3 Test Setup and Instrumentation 417
9.4 Test Description and Results 418
10 Conclusion 420
Acknowledgments 421
19 Methodologies for the Damage Detection Based on Fiber-Optic Sensors. Applications to the Fuselage Panel and Lower Wing Panel 422
Abstract 422
1 Introduction 423
2 Principal Component Analysis 424
2.1 Experimental Setup 426
2.2 Experimental Results 427
3 Modal Strain Energy Damage Index Algorithm 429
3.1 Fiber-Optic Sensor Network Top Fuselage Panel 431
4 Strain Difference-Based Algorithms 433
4.1 Fuselage Panel FE Model 433
4.2 Strain Difference-Based Method 434
4.2.1 Strain Difference-Based Algorithm 434
4.3 Mahalanobis Distance-Based Algorithm 435
4.4 Normal Distribution-Based Algorithm 435
4.5 Investigation Plan 436
4.6 Tuning 438
5 Experimental Validation of Theoretical Approaches 439
5.1 Objective 439
5.2 Description of Composite Structures 439
5.2.1 Fuselage-Type Generic Elements with Assembly Details 440
5.2.2 Fuselage-Type Generic Subcomponents 441
6 Fiber-optic Distributed Sensing of the Effects of Impacts on Fuselage Panels 442
7 Conclusions 445
Acknowledgments 445
References 445
20 Load Monitoring by Means of Optical Fibres and Strain Gages 447
Abstract 447
1 Introduction 448
2 FO-Based Load Monitoring Network for Composite Spars 450
2.1 Load Identification Problem 450
2.2 Architecture of the Monitoring System 454
2.3 Design of the Monitoring System 456
3 Monitoring System for Sectional Loads in the Wing Demonstrator 461
3.1 Description of the Monitoring System 461
3.2 Identification of Internal Forces 462
3.3 Numerical Evaluation of Calibration Matrices 464
3.4 Virtual Assessment of Calibration Matrices 468
4 Feasibility of Damage Detection on Composite Spars Based on Strain Sensing 470
5 Prediction of Aerodynamic Loads and Strategies for the Assessment of Monitoring Systems 476
5.1 Example of Aeroelastic Models for Load Predictions 476
5.2 Potential Interactions of Numerical Approaches for Calibration and Validation of Monitoring System 479
6 Conclusions 481
Acknowledgments 482
References 482
21 Shape Sensing for Morphing Structures Using Fiber Bragg Grating Technology 484
Abstract 484
1 Introduction 485
2 Development of the Shape Sensor 485
2.1 Goal 485
2.2 Sensor System 485
2.3 Requirements and Specifications 486
2.4 Material Selection 487
2.5 Manufacturing and Implementation Process 488
2.5.1 Shape Sensor Manufacturing Parts 488
2.5.2 Shape Sensor Assembly Implementation Procedure 488
3 Principle of Operation 490
3.1 Non-contact Shape Monitoring 490
3.2 Mechanical Analysis 491
3.2.1 The Strip Guides 492
3.2.2 Guiding Forces and the Strip's Deflection Equation 492
3.3 Shape Reconstruction Procedures 494
3.3.1 Sensor Positions and the Strain Value Extrapolation (Interpolation) 494
3.3.2 Strip Shape Reconstruction by Frenet--Serret Formula 495
3.3.3 Wing Shape Reconstruction 496
3.4 Simulation Results 497
3.4.1 Problem Definition 497
3.4.2 Reconstruction Results 498
3.5 Experimental Results 499
3.5.1 Cantilever Experiment 499
3.5.2 Sensing Strip Reconstruction Measurement 499
3.5.3 Morphing Wing Demonstration 501
4 2-Bay and 5-Bay Demonstrator 502
5 Conclusion 503
Acknowledgments 504
References 504
Part VTechnology Stream: Integrated Sensing.Wing Damage Detection EmployingGuided Waves Techniques 505
Introduction and Overview 505
22 Methodologies for Guided Wave-Based SHM System Implementation on Composite Wing Panels: Results and Perspectives from SARISTU Scenario 5 507
Abstract 507
1 Introduction 508
2 Guided Wave-Based SHM Methodologies Developed Within SARISTU Scenario 5: Classification and Description 509
3 Wave Scattering Methodologies: Application and Results 511
3.1 Background 511
3.2 Results 511
4 Tomographic Methodologies: Application and Results 513
4.1 Background of RAPID 514
4.2 Experimental Implementation and Results of RAPID 515
4.2.1 Flat Plate Results using RAPID 516
4.2.2 Stiffened Plate Results using RAPID 519
4.3 Potential Extension of the RAPID Methodology 522
4.4 Conclusion of the RAPID Methodology 522
4.5 Background of the Guided Wave based Damage Index Approach 523
4.6 Results of the Guided Wave based Damage Index Approach 524
5 Statistical Assessment of Threshold Level for Minimum Statistical Damage Assessment 526
6 Methodologies' Critical Comparison and Perspective for Their Integration Within the IS12 Experimental Platform 536
7 Conclusion 538
Acknowledgments 539
23 An Electromechanical Impedance-Based Mobile System for Structural Health Monitoring and Reliability Check of Bonded Piezoelectric Sensors 540
Abstract 540
1 Introduction 541
2 Procedure for Structural Health Monitoring and Reliability Check of Piezoelectric Sensors 542
2.1 EMI for Local Damage Detection 543
2.2 EMI for Reliability Check of Piezo Materials 543
3 Experimental Investigation 544
3.1 Structural Health Monitoring 544
3.2 Reliability Check of Bonded Piezoelectric Sensors 546
4 EMILIA 547
4.1 Electrical Characteristics 548
4.2 Function Diagram 548
4.3 Stages of Development 549
4.4 EMILIA Verification 551
4.5 Detection of Structural Modifications 552
4.6 Experimental Results 553
5 Conclusion 554
Acknowledgments 554
References 554
24 PAMELA SHM System Implementation on Composite Wing Panels 555
Abstract 555
1 Introduction 556
2 SHM System Description 556
3 Damage Detection Capabilities 560
4 Conclusions 564
Acknowledgments 564
References 565
25 Toward the Upscaling of Guided Waves-Based NDE and SHM in Aeronautics 566
Abstract 566
1 Introduction 567
2 Spira Mirabilis 568
2.1 Sensor Design 569
2.2 Experimental Test 570
3 A Miniaturize Sensor Node for Guided Waves NDE and SHM 573
3.1 Interface Architecture 574
3.2 Sensor Architecture 576
3.3 Firmware Workflow 577
4 Augmented Reality Detailed Formatting Instructions 579
4.1 Reference System 580
4.2 Case Study 580
5 Conclusion 583
Acknowledgments 583
References 583
Part VITechnology Stream: Integrated Sensing.Impact Damage Assessment UsingIntegrated Ultrasonic Sensors 586
Introduction and Overview 586
26 Damage Identification in Composite Panels---Methodologies and Visualisation 587
Abstract 587
1 Introduction 589
2 Signal Processing and Damage Identification 590
3 Software with Graphical User Interface 595
3.1 File Load 595
3.2 Preprocessor 597
3.3 Algorithm 597
3.4 Visualisation 599
3.5 Export 601
3.6 Graphs 602
4 Numerical Modelling 603
4.1 SEM 603
4.2 Stacked-Shell FEM 604
5 Use-Cases 605
5.1 Definition of the Test Cases 605
5.2 Results of SEM Model 606
5.3 Results of the SS-FEM Model 607
5.4 Discussion of the Numerical Models 608
5.5 Results of Experimental Data 611
6 Conclusion 611
Acknowledgments 611
References 612
27 Manufacturing of CFRP Panels with Integrated Sensor Network and Contacting of the Network 613
Abstract 613
1 Introduction 614
2 Development of Composite Aerostructures 615
2.1 Goal 615
2.2 Conceptual Design of Composite Aerostructures 615
2.3 Manufacturing Process of Composite Aerostructures 616
2.4 Sensor Technology and Integration 619
2.5 Sensors Quality Control 620
2.6 Finalization of Composite Structures 621
2.7 Contacting of the Sensor Network 621
3 Conclusion 622
Acknowledgments 623
References 623
28 Damage Assessment in Composite Structures Based on Acousto-Ultrasonics---Evaluation of Performance 624
Abstract 624
1 Introduction 624
2 Experimental Set-up: Manufactured Structures and Impact Campaign 625
3 Methodology: Signal Evaluation for Damage Assessment 627
4 Results 629
4.1 Damage Index Selection 629
4.2 Parameter Optimization 631
5 Conclusion 634
Acknowledgments 634
Appendix 634
References 635
29 Path-Based MAPOD Using Numerical Simulations 637
Abstract 637
1 Introduction 638
2 Description of the Used Numerical Models 639
2.1 Spectral Finite Element Method 639
2.2 CIVA Model 640
3 Calculating the Probability of Detection 641
3.1 POD Based on Linear Regression Curve 641
4 Application of MAPOD for CFRP Structures 643
4.1 MAPOD Based on Linear Regression Curve and Spectral Element Method 643
4.2 MAPOD Based on Linear Regression Curve and 2D Hybrid Modal-Finite Element Method 645
5 Conclusion 647
Acknowledgments 647
References 648
Part VIITechnology Stream: Integrated Sensing.Multi-site Damage Assessmentof CFRP Structures 649
Introduction and Overview 649
30 Flat and Curved Panel Manufacturing 651
Abstract 651
1 Introduction 652
2 Flat Panel Manufacturing 652
3 Curved Panel Design 652
4 Curved Panel Tooling Design 657
5 Curved Panel Manufacturing 658
6 Curved Panel Inspection 665
7 Curved Panel Assembly 670
8 Conclusion 671
Acknowledgments 672
31 Compression After Multiple Impacts: Modelling and Experimental Validation on Composite Coupon Specimens 673
Abstract 673
1 Introduction 673
2 Materials and Experimental Techniques 674
2.1 Low-Velocity Impact 674
2.2 Compression After Impact 676
3 Experimental Results 676
3.1 Low-Velocity Impact 676
3.2 Compression After Impact 677
4 FE Modelling 679
5 Correlation Between Simulations and Experiments 681
6 Conclusions 684
Acknowledgments 684
References 684
32 Compression After Multiple Impacts: Modelling and Experimental Validation on Composite Curved Stiffened Panels 686
Abstract 686
1 Introduction 687
2 Manufacturing of the Panels 687
3 Finite Element Model Predictions 689
4 Testing the Panels 690
5 Comparison of Test Results with the FE Models 693
6 Conclusions 694
Acknowledgements 694
References 694
33 Multisite Damage Assessment Tool 695
Abstract 695
1 Introduction 696
2 Damage Types 696
2.1 Hail Strike 698
3 Multisite Damage Assessment Tool 700
3.1 Benefit of an Assessment Tool 700
3.1.1 Philosophy 701
Ideal Damage Assessment Tool 701
Current Damage Assessment Tool 702
3.1.2 Structural Health Monitoring Systems 702
Optical Fibers (OFs) 702
3.1.3 Acousto Ultrasonic (AU) 703
3.2 Operation Mode 704
3.2.1 MSDAT Architecture 704
3.2.2 Graphical User Interface 706
3.2.3 Data Base 708
Test Matrix 708
Simulation on Coupon Level 709
Simulation on Panel Level 710
3.2.4 Results from SHM Systems 710
4 Conclusion 712
Acknowledgments 712
References 713
Part VIIITechnology Stream: Integrated Sensing.Sensitive Coating for Impact Detection 714
Introduction and Overview 714
34 Piezochromic Compounds Able to be Used in Shock Detecting Paints 715
Abstract 715
1 Introduction 716
2 Results and Discussion 716
2.1 Inorganic Compounds Mixture as Universal Shock Sensors 716
2.2 Sub-micrometric beta -CoMoO4 Rods: Optical and Piezochromic Properties 719
2.3 Eu(III)-Doped (Ca0.7Sr0.3)CO3 Phosphors with Vaterite/Calcite/Aragonite Forms as Shock/Temperature Detectors 723
3 Conclusion 725
Acknowledgments 725
References 725
35 Brittle Coating Layers for Impact Detection in CFRP 727
Abstract 727
1 Introduction 728
2 Development of Mechanically Sensitive Sol--Gel Coating 729
3 Results and Discussion 731
3.1 Effect of Temperature 731
3.2 Effect of Sol--Gel Aging 732
3.3 Effect of Filler Addition 733
4 Conclusion 734
Acknowledgments 735
References 735
36 Coating for Detecting Damage with a Manifest Color Change 736
Abstract 736
1 Introduction 737
2 CATALYSE Concept 737
3 Microencapsulation 738
3.1 Impermeability Improving 738
3.2 Adjustment of the Threshold Detection 739
3.3 Use of a Fluorescent Leuco dye 739
4 Coating Preparation 740
4.1 Double Microencapsulation 740
4.2 Multilayer System 741
4.3 New Coating Formulation 742
4.3.1 Revelation After Impact 742
4.3.2 Good Mechanical Properties and Adhesion 742
4.3.3 Water Resistance 742
5 Conclusion 743
Acknowledgments 744
References 744
37 Sensitive Coating Solutions to Lower BVID Threshold on Composite Structure 745
Abstract 745
1 Introduction 745
2 Application Requirements and Test Conditions 746
3 Technologies Improvement and Evaluation 748
3.1 Piezochromic Pigments 748
3.2 Microcapsules 749
3.3 Sol--Gel Matrix 750
4 Conclusion 751
Acknowledgments 751
References 751
Part IXTechnology Stream: MultifunctionMaterials. Enhancement of PrimaryStructure Robustness by ImprovedDamage Tolerance 752
Introduction and Overview 752
38 Use of Carbon Nanotubes in Structural Composites 754
Abstract 754
1 Introduction 755
2 Carbon Nanotubes 755
3 Carbon Nanotube-Doped Epoxy Concentrates 756
4 Carbon Nanotube-Doped Thermoplastics 757
4.1 Veils Application 758
4.2 Powdering Application 758
5 Conclusion 760
Acknowledgments 760
References 760
39 Enhancement of Primary Structure Robustness by Improved Damage Tolerance 762
Abstract 762
1 Introduction 763
2 Experimental 764
3 Results and Discussion 766
3.1 Phase I 766
3.2 Compression After Impact 766
3.3 Interlaminar Shear Strength 767
3.4 In-Plane Compression 767
3.5 Fracture Toughness (Modes I and II) 769
3.6 Phase Ii 770
3.7 Technology 1: BS1+Toughened Veil 770
3.8 Technology 2: References BS3+CNT-Treated Prepreg V1, V2 and V2.1 772
4 Conclusion 773
Acknowledgments 773
References 773
40 Enhancement of Infused CFRP Primary Structure Mechanical Properties Using Interleaving Thermoplastic Veils 775
Abstract 775
1 Introduction 776
2 Phase 1 Coupon Testing and Results 778
3 Phase 2 Coupon Testing and Results 780
4 Sub-Component Impact Testing and Results 781
5 Sub-Component Post-Impact Compression Testing and Results 784
6 Conclusions 788
Acknowledgments 788
41 Multi-scale-Reinforced Prepregs for the Improvement of Damage Tolerance and Electrical Properties of Aeronautical Structures 789
Abstract 789
1 Introduction 790
2 Screening Phase 791
3 Phase 1 792
4 Phase 2 793
5 Results and Conclusions 797
Acknowledgments 798
References 798
Part XTechnology Stream: MultifunctionMaterials. Improvement of the ElectricalIsotropy of Composite Structures 800
Introduction and Overview 800
42 Improvement of the Electrical Isotropy of Composite Structures---Overview 801
Abstract 801
1 Introduction 802
2 Experimental 803
3 Results and Discussion 806
4 Conclusion 809
Acknowledgments 809
References 810
43 Fabrication of Carbon Nanotubes-Doped Veils 811
Abstract 811
1 Introduction 812
2 Materials and Methods 814
3 Results 815
3.1 Veils Fabrication by Pressing 815
3.2 Melt Blown Process 818
4 Conclusions 819
Acknowledgments 819
References 819
44 Finite Element Modelling of CNT-Doped CFRP Plates for Lightning Strike Damage 821
Abstract 821
1 Introduction 822
2 Finite Element Modelling 823
2.1 Coupled Electrical--Thermal Analysis 823
2.2 Fully Coupled Electrical--Thermal--Mechanical Analysis 826
2.3 Conclusions 831
Acknowledgments 832
References 832
45 Metallic Strip Details for Validation of ESN Technologies 834
Abstract 834
1 Introduction 835
2 Metallic Strip Design and Manufacturing Choice 835
2.1 Design Choice 835
2.2 Manufacturing Choices 838
3 Thermomechanical Modelling and Experimentation 839
3.1 Thermomechanical Behaviour Experimentation of a ESC 839
3.2 Thermomechanical Modelling 840
4 Impact Test Results and Conclusion on Damage Tolerance and Detectability of Impacts 842
5 Electrical Simulation and Experimentation 843
5.1 Electrical Current Distribution Simulation 843
5.2 Electrical Coupling Simulation and Experimentation 844
6 Electrothermal Experimentation, Modelling and Results 847
6.1 Electrothermal Experimentation 847
6.2 Electrothermal Simulation 849
Acknowledgments 850
References 850
Part XITechnology Stream: Integrationand Validation. Implementationof Morphing, Structural HealthMonitoring and Nanomaterialson an Outer Wing Box 852
Introduction and Overview 852
46 Morphing Value Assessment on Overall Aircraft Level 853
Abstract 853
1 Introduction 854
2 Assessment Platform 855
3 Integration of Application Scenarios 856
4 Aircraft Models for Comparison 859
5 Results and Comparison 861
6 Conclusion 864
Acknowledgments 865
References 865
47 Implementation of Morphing, Structural Health Monitoring and Nanomaterials on an Outer Wing Box 866
Abstract 866
1 Introduction 867
2 Demonstrator Morphing 868
3 Wing Box Top Panel Spar Steel and Aluminium Parts 869
4 Wing Box Lower Panel 870
5 Design and Manufacturing of Manhole Covers 871
6 Wing Box Load Monitoring System 872
7 Damage Detection Platform for Composite Wing Box Demonstrator 874
8 Conclusion 875
48 Implementation of a Structural Health Monitoring System for a Composite Wing Box Skin 876
Abstract 876
1 Introduction 877
2 Virtual Design Platform 877
2.1 Methodology Integration from AS05 879
2.2 Numerical Modelling of the Full Wing Demonstrator 880
2.3 Methodology Assessment at Level 3 884
2.3.1 Tomography Algorithm---KUL 885
2.3.2 Self-diagnosis---ICL 888
2.4 Conclusion 889
3 Experimental Platform 890
3.1 Hardware 891
3.1.1 EMILIA 891
3.1.2 Acquisition Card NI TB-2708 892
3.1.3 High-Voltage Amplifier 893
3.1.4 Switching Matrix 893
3.2 Software 895
3.2.1 Step Result Files 897
3.2.2 Saristu Sequence Generator 897
3.2.3 Data Viewer 898
3.3 Cables and Transducers Bonding 898
4 Conclusion 900
Acknowledgments 901
References 901
49 Value at Risk for a Guided Waves-Based System Devoted to Damage Detection in Composite Aerostructures 902
Abstract 902
1 Introduction 903
2 Methodology 903
3 Multilevel Damage Classification 905
3.1 Classical ROC and Multiclass ROC Analysis 906
4 Statistical Performances of the SHM System 907
5 Bayesian Updating and Threshold Optimization 908
5.1 Expected Cost Analysis for Threshold Optimization 909
5.2 Value at Risk Approach for Threshold Optimization 909
Acknowledgments 909
References 910
Part XIITechnology Stream: Integrationand Validation. Fuselage Assembly,Integration and Testing 911
Introduction and Overview 911
50 Fuselage Demonstrators: An Overview of the Development Approach 912
Abstract 912
1 Introduction 913
1.1 SARISTU Project Structure and Test Pyramid 913
1.2 SARISTU Adaptation of the TRL Process 915
2 Integration Scenario 13: Fuselage Assembly, Integration and Testing 915
3 Risk Minimizing and Mitigation 916
4 Exploitation of Synergies and Opportunities 920
5 Streamlining of the Development 922
6 Conclusion 923
Acknowledgments 924
51 Development of a Door Surround Structure with Integrated Structural Health Monitoring System 925
Abstract 925
1 Introduction 926
2 Design of the Door Surround Structure 927
3 Structural Health Monitoring Network 928
4 Manufacturing of the Door Surround Structure 930
4.1 Skin Manufacturing 930
4.2 Stringer Manufacturing and Bonding 931
4.3 Manufacturing of the Ladder Structure 932
4.4 Manufacturing of the Normal Frames 932
4.5 Assembly and Cabling of the Door Surround Structure 934
5 Conclusion 935
Acknowledgments 935
References 935
52 Damage Introduction, Detection, and Assessment at CFRP Door Surrounding Panel 936
Abstract 936
1 Requirements and Specifications 936
2 Verification of Manufacturing and Implementation Process 937
3 Verification of Damage Assessment 940
3.1 Impact Introduction 940
3.2 Reference NDI 941
3.3 SHM Measurement 942
3.4 Verification of Requirements 944
4 Conclusion 945
Acknowledgments 946
References 946
53 Installation of Metallic Strip on CRFP Frames: Assessment of IS13 Mechanical and Electrical Performance 947
Abstract 947
1 Introduction 948
2 Damage Tolerance Testing 949
3 Electrical Performance Assessment 950
3.1 State of the Art 950
3.2 IS13 Panel and Electrical Support Definition 951
3.3 Modelling Strategy 952
3.4 IS13 Electrical Model 953
3.5 First Results 954
4 Conclusion 956
Acknowledgments 956
References 956
54 Benefit Analysis Value and Risk Assessment of New SARISTU-Technologies 957
Abstract 957
1 Introduction 958
2 New SARISTU-Technologies 960
2.1 AS04---Fibre Optic-Based Monitoring System [1, 2, 3] 960
2.2 AS06---Impact Damage Assessment by Self-sensing Structures Using Integrated Ultrasonic Sensors [1, 2] 961
2.3 AS07---Multi-Site Damage Assessment of CFRP Structures [1, 4] 962
2.4 AS08---Sensitive Coatings for Impact Detection [1, 5] 963
2.5 AS09---Enhancement of Primary Structure Robustness by Improved DT [7] 963
2.6 AS10---Improvement of the Electrical Isotropy of CFRP Structures [1] 964
2.7 Correlation of Application Scenario Technologies to the IS13 Work Packages 965
2.8 Demonstrator Naming and WP Primary Research Focus 965
2.9 WP133---Door Surround Structure (DSS) 967
2.10 WP133---Mini-Door 967
2.11 WP134---Lower Panel 968
2.12 WP135---Side Panel 969
2.13 Technology Research and Development Status 970
2.14 Technology Topics 971
3 Technical Risk Analysis 972
3.1 General 972
3.2 Structural Health Monitoring Risk Assessment 973
3.3 Electrical Isotropy Risk Assessment 973
3.4 Damage Tolerance Risk Assessment 977
4 Benefit and Impact Assessment 979
4.1 Weight Assessment 981
4.2 Process Time Assessment 981
4.2.1 Methodology 982
4.2.2 Impact of Manufacturing Processes Selection 983
4.3 Cost Assessment 983
5 Conclusion 984
Acknowledgments 985
References 985
55 Manufacturing of Nano-treated Lower Panel Demonstrators for Aircraft Fuselage 986
Abstract 986
1 Introduction 988
2 Design Adaptation 989
2.1 Materials 989
2.2 Lower Panel Design 990
2.3 Frame Design and Manufacturing 992
2.4 Assembly Design 994
3 Tooling 994
4 Manufacturing 996
4.1 Tool Cleaning---Release Agent Application 998
4.2 Ply Cutting 999
4.3 Lay-up Operation 999
4.4 Vacuum Bag Operation 1000
4.5 Curing 1000
4.6 Demould Operation 1001
4.7 Deburr Operation 1001
4.8 Ultrasonic Inspection 1001
4.9 Control of Panel Dimensions 1002
4.10 Reinforcement Application on Cured Part 1002
4.11 Results of the DiAMon Plus2122 Cure Monitoring 1003
5 Frame Assembly 1005
6 Conclusion 1006
Acknowledgments 1006
References 1006
56 Design and Manufacturing of WP135 Side Panel for Validation of Electrical Structure Network (ESN) Technologies 1007
Abstract 1007
1 Introduction 1008
2 Cold Process Metallization 1008
2.1 Cold Vapour Deposition Metallization 1009
2.2 Cold Spray 1011
3 Side Panel Design 1013
4 Skin and Stringer Tooling 1016
5 Skin Panel Manufacturing 1017
5.1 Material Preparation 1017
5.2 Prepreg Layup 1017
5.3 Curing, Machining and Inspection 1018
6 Frame Design 1019
7 Frame Manufacturing 1020
8 Side Panel Assembly 1023
Acknowledgments 1025

Erscheint lt. Verlag 4.9.2015
Zusatzinfo XXVIII, 1039 p. 865 illus., 774 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Luft- / Raumfahrttechnik
Technik Maschinenbau
Schlagworte Multifunctional Structures • Multifunction Materials • Nanocomposite Manufacturing • SARISTU • Smart Intelligent Aircraft Structures • Structural Health Monitoring • Structural Nanocomposites • Structure functional integration
ISBN-10 3-319-22413-1 / 3319224131
ISBN-13 978-3-319-22413-8 / 9783319224138
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 47,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Physikalisch-mathematische Grundlagen

von Georg Bräunling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
249,99
Das aktuelle Raumfahrt-Jahrbuch mit allen Starts

von Eugen Reichl; Stefan Schiessl

eBook Download (2023)
Verein zur Förderung der Raumfahrt (Verlag)
6,99